Introduction to Deep Neural
Networks

Zhihao Jia

Computer Science Department
Carnegie Mellon University

1/21/22

Administrative

 Sign up for paper presentations (presentations start on week 3)
* Initial assignments will be

* First reading assignments

» All lectures will be available on Canvas

Content

» Stochastic Gradient Descent
« Backpropagation and Automatic Differentiation
* Understand Our Applications: An Overview of Neural Networks

Recap: Deep Neural Network

 Collection of simple trainable mathematical units that work together to
solve complicated tasks

A tensor (i.e., n-dimensional array)

A tensor algebra operator
(e.g., convolution, matrix mul)

Q
el
>R

=
o

= | = 1
TR A MY
2o0¢c~2 8

= 0O

v
299528
-~

)
9
)
o}

=

3

X 353 ~ o
=)

DNN Training Overview

layerl layer2

extractor extractor predictor
el | _ 1
S |:> LA exp (—w!'z;)
N
n
Objective L(w) =) Uy, 5;) + Aw]?

Training W < W

Gradient Descent (GD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce error for
each trainable weight

. use the loss value to update model weights

Model inputs 108 Model prediction

ooooooo
CCCCCC

Gradient Descent (GD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce a gradient
for each trainable weight

. use the loss value to update model weights

J(w) Initial

/ Gradient
Welght \ III/
I

7
; ! |
1' / ll
" 4 obal -
L Global cost minimum
iy dL(w) s

- Jmin(w)

Model inputs

,,,,,,,,,,,,,,,,,

@ Softmax 6 Wi

w

Gradient Descent (GD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce a gradient
for each trainable weight

. use the gradients to update model weights

N
dL(w) 14 al;(w)

W: = W;: —)/ W: — —
' y aWi ' N 1 an'
]:

Stochastic Gradient Descent (SGD)

* Inefficiency in gradient descent
* Too expensive to compute gradients for all training samples

« Especially for todays large-scale training datasets (e.g., ImageNet-22K
with 14 million images)

o alw) Y = 9l (w) oy 2 9l (w)
WY T T YT N L T aw, LT p L aw,
f]

/ -
N is the size of the

entire training dataset b is called batch size

Content

» Stochastic Gradient Descent

 How to compute gradients: Backpropagation and Automatic
Differentiation

» Understand Our Applications: An Overview of Neural Networks

10

How to compute gradients? Backpropagation

e Sum rule

d(f(x) + g(x)) df(x) N dg(x)
dx dx dx

 Product rule

d d d
(f(x;f(x)) _ J;ix)g) + iix))

 Chain rule

df(g(x)) df(y)dg(x)
dx dy dx

11

Backpropagation: a simple example

* foy,z)=(x+y)(x+2z) X
p
y —
f(x,y,2)
q
Z

Each node is an intermediate variable.
Computation graph (a DAG) with variable
ordering from topological sort

12

Backpropagation: a simple example

* foy,z)=(x+y)(x+2z) X
cEg.,x=-2,y=5z=-4 0
y —
f(x,y,2)
q
Z

Each node is an intermediate variable.
Computation graph (a DAG) with variable
ordering from topological sort

13

of

Exercise: Compute —

* f,y,z) = (x+y)(x+2z)
Eg,x=-2,y=52z=4

= x + :ap—1
p=xTYy O
—xtz 2o
q=xrz ox

X
P
y————
9
y4

Each node is an intermediate variable.
Computation graph (a DAG) with varia
ordering from topological sort

f(x,y,2)

ble

14

Exercise: Compute o

oy

* f,y,z) = (x+y)(x+2z)
Eg,x=-2,y=52z=4

=x+ :>ap_1
p=x+y 3y
=x+ =>aq—0
q=x+z ay_
B af Op dq
f=p=*q :>6y_6y q+ay*p

X
P
y————
9
y4

Each node is an intermediate variable.
Computation graph (a DAG) with varia
ordering from topological sort

f(x,y,2)

ble

15

of

Exercise: Compute -~

fl,y,z) = (x+y)(x +2)
Eg,x=-2,y=52z=4

=x+ =>ap—0
p=xTy =57
=x+ :>6q_1
q=x+z =2 =

f=pxq =" =2"*q+5 *p
=0*x—6+1%3=3

X
P
y————
9
y4

Each node is an intermediate variable.
Computation graph (a DAG) with varia
ordering from topological sort

f(x,y,2)

ble

16

Issues?

* If a model has n input variables, we need n forward passes to compute the
gradient with respect to each input

« Deep learning models have large number of inputs (e.g., billions or up to
trillions of trainable weights)

« Solution: reverse mode AutoDiff

17

Reverse Mode Automatic Differentiation

* For each node v, we introduce an adjoint node v corresponding to the
of

gradient of output wrt to this node P

« Compute nodes’ gradients in a reverse topological order

18

dl 0l 0l
ox’' 0y’ 0z’

Exercise: Compute

cl=fy2)=x+y)(x+2z)
+Eg.,x=-2,y=5,z=-4
ol

.§=1

id

ol
of

19

dl 0l 0l
ox’' 0y’ 0z’

Exercise: Compute

cl=fy2)=x+y)(x+2z)
+Eg.,x=-2,y=5,z=-4

.§=1
oo or ol
9 of Xaq ar P =3

20

Exercise: Compute

cl=fxy2)=x+y)(x+2)
=5,z=-4

cEg,x=-2,y=
ol

5—1
JOL_ oL or_
aq_afxaq_

ol al of
) —_— =_Xq=_

ap ~ af " ap

1Xp =3

0l
of

dl

ox’' 0y’ 0z’

6

X

id

ol
of

21

Exercise: Compute

dl dl 0l
ox’' 0y’ 0z’

l=f(xy2z)=x+y)(x+2z)
Eg.,x=-2,y=5,z=+4
l

or = 1

JOL_oL of

5q — a7 aq—1><p—3

oL _ ot of _ _ _
ap_afxap_lxq_ 6 al

o _ o o 9L dq_ oL a
ax_ap dx 0q ax_ap aq

|
|
|
|
|

22

dl dl 0l

Exercise: Compute ox' 3y’ 92"

cl=fxy2)=x+y)(x+2)

+Eg.,x=-2,y=5,z=-4

of

dl adl 0o

¢ —=— —f=1><p—3 Z
dq Of Oq

dl dl _ df

® — — — X — = 1X = —

op ~of Xop 1% =76 ol Q
ol ol Jdp dl 0dq

.—=—X— —X_=_

0x dp 6x+6q 0x 3

dl ol 0

¢ —=—x2L=-6x1=-6

dy dp Oy

a *
i
ﬂ
ay
OF

dq

A\ 4

d

y *
oﬂ:l f

ol
of

23

. ol ol

Exercise: Compute x5y 92"

cl=fxy2)=x+y)(x+2)

Eg,x=-2,y=52z=4

.aa_;=1

%:%xg—i=1xq=—6 g_z

x

j-i:j—; %Jrj—;xg—j——g

%:3—; 2—5——6x1=—6 %

5 =% 5 = 3X1=3 o
0z

24

Forward
computation
graph

Backward
computation
graph

25

Discuss: Backpropagation v.s. Reverse AutoDiff

Backpropagation Reverse AutoDiff

dp

What is the difference between
backpropagation and reverse AutoDiff?

26

Discuss: Backpropagation v.s. Reverse AutoDiff

. backpropagation requires a forward-backward pass for each
variable, while reverse AutoDiff only requires one forward-backward pass

. reverse AutoDiff represents the forward-backward in a
single computation graph, make it easier to apply graph-level optimizations

. we can take derivative of derivative nodes in
reserve AutoDiff, while it's much harder to do so in backpropagation

27

Higher Order Derivatives

Forward
Graph

First-Order
Derivative
Graph

28

Reverse AutoDiff Implementation

class ComputationalGraph(object):

o

def

def

forward(inputs):

1. [pass inputs to input gates...]

2. forward the computational graph:

for gate in self.graph.nodes topologically sorted():
gate.forward()

return loss # the final gate in the graph outputs the loss

backward() :

for gate in reversed(self.graph.nodes topologically sorted()):
gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients

29

Forward/Backward Implementation

y
(X,y,z are scalars)

class MultiplyGate(object):

def

def

forward(x,y):

Z = X*y

self.x = x # must keep these around!
self.y = y

return z

backward(dz):

dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]

return [dx, dy]

30

Manual Gradient Checking: Numeric Gradient

 How do we check the correctness of our implementation?

ol L(x+86x;)—1l(x—8x;
. For small §, 2L ~ {xrox)-lx=0x)
0x; 28
. easy to implement
. : approximate and very expensive to compute; need to recompute

[(x + 6x;) for every parameter

« Useful for checking the correctness of our implementation; serve as
unit test in today’s DNN systems

3{"9" 7<c .
v,

31

Summary
el

. apply model to a batch of input samples and run
calculation through operators and save intermediate results

. run the model in reverse and apply chain rule to compute

gradients
. use the gradients to update model weights
b
OL(w) = 91, (w) Y~ 0L (w)
W; = W; — = W: ~ W: — —
=W e lN Iw, LT p L ow,

Jj=1 Jj=1

32

Understand Our Applications:
An Overview of Deep Learning Models

« Convolutional Neural Networks
* Recurrent Neural Networks
 Transformers

 Graph Neural Networks

* Mixture-of-Experts

33

CNNSs are widely used in vision tasks

beach wagon
fire engine | dead-man's-fingers

Classification

E

S0

Segmentation Self-Driving Synthesis
34

Recap: Convolution

« Convolve the filter with the image: slide over the image spatially and
compute dot products

Source pixel {

(-1x3)+(0x0)+(1x1)+
(2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3

v
¥\

\ ¥\
4 ’
- f
{ /

e s Ao/ RS
BlisisEhe

Convolution filter
(Sobel Gx)
Destination pixel

VORI O (T

]
]
L
T
[}
]
]
[
=

=
L
L
L
L
L
L
=
=

VRO

S

CNNs

« A sequence of convolutional layers, interspersed by pooling, normalization,

and activation functions

[Zeiler and Fergus 2013]

@

VGG-16

Low-level
features

Mid-level
features

High-level
features

Linearly
separable
classifier

onv1_1

36

MLSys Challenges in CNNs:
Increasing Computational Requirements

300 16
264 0 14.1
250 o4
5 S 12
%"200 [= 10
q_-l 152 "
5 150 9 g
— Q
9 102 £
e 100 3 6
=) Y
Z o 4
50 N
12 19 8 2 1.4
o = M £, 005 NN
DR S LS LS z | |
NN QT 2 N 9 & NS
NN AN < X 1%
X X %) ‘
¢ L& & 8 «¥ X ¢
O O NN o) S N
N K N &

MLSys Challenges in CNNs:
Increasing Computational Requirements

. convolutions are extremely compute-intensive
. high-resolution images cannot fit in a single GPU

. parallelize training across GPUs
« Week 6: Data and Model Parallelism for Distributed Training
« Week 6: Pipeline Parallelism for Distributed Training
* Week 7: Memory-Efficient Training

38

MLSys Challenges in CNNSs: Efficiency

. difficult to deploy most accurate CNNs on edge devices with
limited compute resources, memory capacity, and energy

: model compression, efficient convolution algorithms, neural
architecture search

» Week 11: Model Compression
« Week 4: ML Compilation
 Week 12: ML Hardware

39

Understand Our Applications:
An Overview of Deep Learning Models

e Recurrent Neural Networks

40

Recurrent Neural Networks: Process Sequences

one to one

\

Vanilla Neural Networks

41

Recurrent Neural Networks: Process Sequences

one to one one to many
! . O
! f

\

e.d., image captioning
Image -> sequence of words

42

Recurrent Neural Networks: Process Sequences

one to one one to many many to one
! . f
! f Pt

e.d., action prediction
sequence of video frames -> action

43

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

Video captioning: sequence of /

video frames -> sequence of words Video classification
Machine translation on frames

44

Recurrent Neural Networks

outputsli] Arbitrary number of outputs

Key idea: RNNs have an
Recurrent > internal state that is
Neural
Networks updated as a sequence
is processed

T

inputsi] Arbitrary number of inputs

45

How to Represent RNNs in Computation Graphs

« Computation graphs must be direct acyclic graphs (DAGs) but RNNs have
self loops

» Solution: unrolling RNNs (define maximum depth)

output, output; output, output,

~&~ ﬁ& %
state T state, state, T state, T

input, input; input; input,

46

When do we need RNNs?

 RNNs are designed to process sequences (texts, videos)

 RNNs are extremely useful when you want your model to have internal
states when a sequence is processed

« Commonly used in reinforcement learning (RL)

* Week 5: RL for device placement and graph optimizations

47

Understand Our Applications:
An Overview of Deep Learning Models

e Transformers

48

Inefficiency in RNNs?

* Problem: lack of parallelizability. Both forward and backward passes have
O(sequence length) unparallelizable operators

A state cannot be computed before all previous states have been
computed

* Inhibits training on very long sequences

output, output, output, output,

state, state, #m# m#

input, input; input; input,

Attention: Enable Parallelism within a Sequence

* |[dea: treat each position’s representation as a query to access and
incorporate information from a set of values

Attention Layer2
Attention Layer 1
vero 01 0] 01 o 00 o] [0 O

h1 h2

hy

50

Attention: Enable Parallelism within a Sequence

* |[dea: treat each position’s representation as a query to access and
incorporate information from a set of values

« Massively parallelizable: number of unparallelizable operations does not
Increase sequence length

We will learn attention and

Attention Layer2. . l 2 transformers in depth later:

o Self-attention
 Masked attention
 Multi-head attention

avero 0| 0] @) 0| @ o O
1

hz hT values

51

MLSys Challenges: Exponentially Increasing
Computational Costs for Transformer Models

MegatronlM
8300
- »
c §
2 7500 <3
= NVIDIA.
E] L]
- We have seen similar
m L)
£ trend in CNNs before.
]
g 5000
o
o
—_—
3
s w
é o @AI UNIVERSITY o, WASHINGTON
pen G p
2 2500 K2 crr2 1:1(:»;'::
& {3l Google Al 1500 mm mnoﬁ P
m OpenAl 1rm;sl—‘:_."<;npr ® =] ° :L.\?Jl
: BERT-Large . MT-DNN XLM 665 RoBERTa
&;ro ;S:g 340 465 330 340 555 ’%.gmetm
XLNET)
o 4 © - » Carnegie ® ® Y
.\\.\‘b \\\\‘b _\.\‘b ;\\.\(-\ ﬁ\\,\t\. University «\\'\C\
N N & > \ o
. ¥ & _ \ v

How to Design Systems for Transformers Models?

(week 7): how to train large Transformers on GPUs
with limited memory

(week 9): how to design customized parallelization
strategies for multi-head attention computation

(week 11): Switch Transformers = Transformers
+ Mixture-of-Experts

53

Understand Our Applications:
An Overview of Deep Learning Models

Graph Neural Networks

54

Graph Neural Networks: The Hottest Subfield in ML

ICLR Keyword Growth 2018-2020

graph neural network

adversarial robustness
robustness
meta-learning
transformer

neural architecture search

self-supervised learning

bert
B 2019
— mm 2020

continual learning

0.0000 0.0025 0.0050 0.0075 0.0100
% of keywords

95

GNNs: Neural Networks on Relational Data

Neural Networks Graph Neural Networks

Hidden layer Hidden layer

° °
° ° ° °
v . v e Output

ReLU ReLU
tput layer A A

o;o

K
a3

()
{

W/
N
‘;

)

input layer

° o
A A
hidden layer 1 hidden layer 2
-
® =2 n - -
Classificati Classification Obiect Detection Instance ; ,.’ l/ _ ® o ‘
assitication) ocalization ! Segmentation ks n 6 “ a d - @-ds OpnlE
>R " n’\ N i | @ Py () Freebase Cye GeoNames
2 a ﬁ i . . ConceptNet gl . o
i oV &= = GDelt
M = -H \ 4 g . g
) = AL = -
@ g 8 < o KNOWLEDGE
[&=550) . n @ - ; \,,,,/. . GRAPH
- \ 5 7"-” ﬁ n 4 HEpedia PROSPERA
CAT, DOG, DUCK CAT, DOG, DUCK - p AN .ﬁ . M YAGO o
N AN J o] | | D .'l wordnet Metaweb
' Y i == p > . . Knowledge Vault
Single object Multiple objects == ’ —

Graph Neural Network Architecture

 Combine graph propagation w/ neural network operations

Input
Representations

New
Representations

@ Target vertex
@ Neighbors

Aggregation
(sum, LSTM, ...)

Neighbor Aggregation DNN Operations

Y

Challenges of GNN Computations on GPUs

Neural Networks

input layer

hidden layer 1 hidden layer 2

¥

Small and regular
intermediate data

Graph Neural Networks

Hidden layer Hidden layer

¢ c . Output
\//' RelU | o ReLU
RN SRR
. -\' . -\'

Large and irregular
intermediate data

Efficiency &

@ scalability

challenges
58

How to Design Systems for Graph Neural Networks

* New Programming Models (week 10): gather-apply-scatter programming
interface for distributed GNN

* New Systems Infrastructure (week 10): serverless computing for low-
cost GNN training

59

Understand Our Applications:
An Overview of Deep Learning Models

Mixture-of-Experts

60

Mixture-of-Experts

: make each expert focus on predicting the right answer for a

subset of cases

MoE MoE
layer layer

. /MoE layer \
G(x),| |G(X)
Expert 1 Expert 3 Expert n

61

Switch Transformers = Transformers + Mixture of Experts

y

A

Add + Normalize

1

Switching FFN Layer

1

Add + Normalize

1

Self-Attention

yi (I TTTT] v[TTTTT]
A A
- >[Add + Normalize }4

FFN 1 [FFN 2
'ﬂ

][FFN3][FFN4] :)

-

-

s ;[Add + Normalize }:
Self-Attention
A \
\
Positional 9 Positional 3
embedding Y embedding Y
x1 11111 x (11
More Parameters

62

Recap: An Overview of Deep Learning Models

« Convolutional neural networks: various computer vision tasks
* Recurrent neural networks: processing sequences

» Transformers: efficient natural language processing

« Graph neural networks: deep learning on relational data

* Mixture of experts: ensemble deep learning

» A key takeaway: DNN techniques are not applied in isolation. Solving real-
world problems require ""clever” integration of DNN techniques

63

1

Next Lecture: Deep Learnlng Systems

e) [
HDSSSG uﬁg}g MJ ML MOdel]M DBDMMQYH ﬂ}}ru
80— 88 B I \

Automatic Differentiation

Parallelization / Distributed Training We will learn the current design and
key techniques of each stack in ML
systems

Memory Optimizations

64

