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Administrative

 Sign up for paper presentations (presentations start on week 3)
* Initial assignments will be

* First reading assignments

» All lectures will be available on Canvas



Content

» Stochastic Gradient Descent
« Backpropagation and Automatic Differentiation
* Understand Our Applications: An Overview of Neural Networks



Recap: Deep Neural Network

 Collection of simple trainable mathematical units that work together to
solve complicated tasks

A tensor (i.e., n-dimensional array)

A tensor algebra operator
(e.g., convolution, matrix mul)
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DNN Training Overview
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Gradient Descent (GD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce error for
each trainable weight

. use the loss value to update model weights

Model inputs 108 Model prediction

ooooooo
CCCCCC



Gradient Descent (GD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce a gradient
for each trainable weight

. use the loss value to update model weights
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Gradient Descent (GD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce a gradient
for each trainable weight

. use the gradients to update model weights
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Stochastic Gradient Descent (SGD)

* Inefficiency in gradient descent
* Too expensive to compute gradients for all training samples

« Especially for todays large-scale training datasets (e.g., ImageNet-22K
with 14 million images)
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N is the size of the

entire training dataset b is called batch size




Content

» Stochastic Gradient Descent

 How to compute gradients: Backpropagation and Automatic
Differentiation

» Understand Our Applications: An Overview of Neural Networks
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How to compute gradients? Backpropagation

e Sum rule

d(f(x) + g(x)) df(x) N dg(x)
dx  dx dx

 Product rule

d d d
(f(x;f(x)) _ J;ix)g ) + iix) )

 Chain rule

df(g(x)) df(y)dg(x)
dx dy dx
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Backpropagation: a simple example

* foy,z)=(x+y)(x+2z) X
p
y —
f(x,y,2)
q
Z

Each node is an intermediate variable.
Computation graph (a DAG) with variable
ordering from topological sort
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Backpropagation: a simple example

* foy,z)=(x+y)(x+2z) X
cEg.,x=-2,y=5z=-4 0
y —
f(x,y,2)
q
Z

Each node is an intermediate variable.
Computation graph (a DAG) with variable
ordering from topological sort
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Exercise: Compute —

* f,y,z) = (x+y)(x+2z)
Eg,x=-2,y=52z=4

= x + :ap—1
p=xTYy O
—xtz 2o
q=xrz ox

X
P
y————
9
y4

Each node is an intermediate variable.
Computation graph (a DAG) with varia
ordering from topological sort

f(x,y,2)
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Exercise: Compute o

oy

* f,y,z) = (x+y)(x+2z)
Eg,x=-2,y=52z=4

=x+ :>ap_1
p=x+y 3y
=x+ =>aq—0
q=x+z ay_
B af Op dq
f=p=*q :>6y_6y q+ay*p

X
P
y————
9
y4

Each node is an intermediate variable.
Computation graph (a DAG) with varia
ordering from topological sort

f(x,y,2)

ble
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Exercise: Compute -~

fl,y,z) = (x+y)(x +2)
Eg,x=-2,y=52z=4

=x+ =>ap—0
p=xTy =57
=x+ :>6q_1
q=x+z =2 =

f=pxq =" =2"*q+5 *p
=0*x—6+1%3=3

X
P
y————
9
y4

Each node is an intermediate variable.
Computation graph (a DAG) with varia
ordering from topological sort

f(x,y,2)

ble
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Issues?

* If a model has n input variables, we need n forward passes to compute the
gradient with respect to each input

« Deep learning models have large number of inputs (e.g., billions or up to
trillions of trainable weights)

« Solution: reverse mode AutoDiff
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Reverse Mode Automatic Differentiation

* For each node v, we introduce an adjoint node v corresponding to the
of

gradient of output wrt to this node P

« Compute nodes’ gradients in a reverse topological order
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dl 0l 0l
ox’' 0y’ 0z’

Exercise: Compute

cl=fy2)=x+y)(x+2z)
+Eg.,x=-2,y=5,z=-4
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dl 0l 0l
ox’' 0y’ 0z’

Exercise: Compute

cl=fy2)=x+y)(x+2z)
+Eg.,x=-2,y=5,z=-4

.§=1
oo or ol
9 of Xaq ar P =3
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Exercise: Compute

cl=fxy2)=x+y)(x+2)
=5,z=-4

cEg,x=-2,y=
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Exercise: Compute

dl dl 0l
ox’' 0y’ 0z’

l=f(xy2z)=x+y)(x+2z)
Eg.,x=-2,y=5,z=+4
l
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dl dl 0l

Exercise: Compute ox' 3y’ 92"

cl=fxy2)=x+y)(x+2)

+Eg.,x=-2,y=5,z=-4
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Exercise: Compute x5y 92"

cl=fxy2)=x+y)(x+2)

Eg,x=-2,y=52z=4

.aa_;=1

%:%xg—i=1xq=—6 g_z
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Forward
computation
graph

Backward
computation
graph
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Discuss: Backpropagation v.s. Reverse AutoDiff

Backpropagation Reverse AutoDiff

dp

What is the difference between
backpropagation and reverse AutoDiff?
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Discuss: Backpropagation v.s. Reverse AutoDiff

. backpropagation requires a forward-backward pass for each
variable, while reverse AutoDiff only requires one forward-backward pass

. reverse AutoDiff represents the forward-backward in a
single computation graph, make it easier to apply graph-level optimizations

. we can take derivative of derivative nodes in
reserve AutoDiff, while it's much harder to do so in backpropagation
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Higher Order Derivatives

Forward
Graph

First-Order
Derivative
Graph
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Reverse AutoDiff Implementation

class ComputationalGraph(object):

o

def

def

forward(inputs):

# 1. [pass inputs to input gates...]

# 2. forward the computational graph:

for gate in self.graph.nodes topologically sorted():
gate.forward()

return loss # the final gate in the graph outputs the loss

backward() :

for gate in reversed(self.graph.nodes topologically sorted()):
gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients
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Forward/Backward Implementation

y
(X,y,z are scalars)

class MultiplyGate(object):

def

def

forward(x,y):

Z = X*y

self.x = x # must keep these around!
self.y = y

return z

backward(dz):

dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]

return [dx, dy]
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Manual Gradient Checking: Numeric Gradient

 How do we check the correctness of our implementation?

ol L(x+86x;)—1l(x—8x;
. For small §, 2L ~ {xrox)-lx=0x)
0x; 28
. easy to implement
. : approximate and very expensive to compute; need to recompute

[(x + 6x;) for every parameter

« Useful for checking the correctness of our implementation; serve as
unit test in today’s DNN systems

3{"9" 7<c .
v,
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Summary
el

. apply model to a batch of input samples and run
calculation through operators and save intermediate results

. run the model in reverse and apply chain rule to compute

gradients
. use the gradients to update model weights
b
OL(w) = 91, (w) Y~ 0L (w)
W; = W; — = W: ~ W: — —
=W e lN Iw, LT p L ow,

Jj=1 Jj=1
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Understand Our Applications:
An Overview of Deep Learning Models

« Convolutional Neural Networks
* Recurrent Neural Networks
 Transformers

 Graph Neural Networks

* Mixture-of-Experts
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CNNSs are widely used in vision tasks

beach wagon
fire engine | dead-man's-fingers

Classification

E

S0

Segmentation Self-Driving Synthesis
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Recap: Convolution

« Convolve the filter with the image: slide over the image spatially and
compute dot products

Source pixel {

(-1x3)+(0x0)+(1x1)+
(2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3
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CNNs

« A sequence of convolutional layers, interspersed by pooling, normalization,

and activation functions

[Zeiler and Fergus 2013]

@

VGG-16

Low-level
features

Mid-level
features

High-level
features

Linearly
separable
classifier

onv1_1
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MLSys Challenges in CNNs:
Increasing Computational Requirements
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MLSys Challenges in CNNs:
Increasing Computational Requirements

. convolutions are extremely compute-intensive
. high-resolution images cannot fit in a single GPU

. parallelize training across GPUs
« Week 6: Data and Model Parallelism for Distributed Training
« Week 6: Pipeline Parallelism for Distributed Training
* Week 7: Memory-Efficient Training

38



MLSys Challenges in CNNSs: Efficiency

. difficult to deploy most accurate CNNs on edge devices with
limited compute resources, memory capacity, and energy

: model compression, efficient convolution algorithms, neural
architecture search

» Week 11: Model Compression
« Week 4: ML Compilation
 Week 12: ML Hardware
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Understand Our Applications:
An Overview of Deep Learning Models

e Recurrent Neural Networks

40



Recurrent Neural Networks: Process Sequences

one to one

\

Vanilla Neural Networks
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Recurrent Neural Networks: Process Sequences

one to one one to many
! . O
! f

\

e.d., image captioning
Image -> sequence of words
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one
! . f
! f Pt

e.d., action prediction
sequence of video frames -> action
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

Video captioning: sequence of /

video frames -> sequence of words Video classification
Machine translation on frames
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Recurrent Neural Networks

outputsli] Arbitrary number of outputs

Key idea: RNNs have an
Recurrent > internal state that is
Neural
Networks updated as a sequence
is processed

T

inputsi] Arbitrary number of inputs
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How to Represent RNNs in Computation Graphs

« Computation graphs must be direct acyclic graphs (DAGs) but RNNs have
self loops

» Solution: unrolling RNNs (define maximum depth)

output, output; output, output,

~&~ ﬁ& %
state T state, state, T state, T

input, input; input; input,
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When do we need RNNs?

 RNNs are designed to process sequences (texts, videos)

 RNNs are extremely useful when you want your model to have internal
states when a sequence is processed

« Commonly used in reinforcement learning (RL)

* Week 5: RL for device placement and graph optimizations
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Understand Our Applications:
An Overview of Deep Learning Models

e Transformers

48



Inefficiency in RNNs?

* Problem: lack of parallelizability. Both forward and backward passes have
O(sequence length) unparallelizable operators

A state cannot be computed before all previous states have been
computed

* Inhibits training on very long sequences

output, output, output, output,

state, state, #m# m#

input, input; input; input,




Attention: Enable Parallelism within a Sequence

* |[dea: treat each position’s representation as a query to access and
incorporate information from a set of values

Attention Layer2
Attention Layer 1
vero 01 0] 01 o 00 o] [0 O

h1 h2

hy
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Attention: Enable Parallelism within a Sequence

* |[dea: treat each position’s representation as a query to access and
incorporate information from a set of values

« Massively parallelizable: number of unparallelizable operations does not
Increase sequence length

We will learn attention and

Attention Layer2. . l 2 . . . . transformers in depth later:

o Self-attention
 Masked attention
 Multi-head attention

avero 0| 0] @ ) 0| @ o O
1

hz hT values
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MLSys Challenges: Exponentially Increasing
Computational Costs for Transformer Models
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How to Design Systems for Transformers Models?

(week 7): how to train large Transformers on GPUs
with limited memory

(week 9): how to design customized parallelization
strategies for multi-head attention computation

(week 11): Switch Transformers = Transformers
+ Mixture-of-Experts
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Understand Our Applications:
An Overview of Deep Learning Models

Graph Neural Networks
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Graph Neural Networks: The Hottest Subfield in ML

ICLR Keyword Growth 2018-2020

graph neural network

adversarial robustness
robustness
meta-learning
transformer

neural architecture search

self-supervised learning

bert
B 2019
— mm 2020

continual learning

0.0000 0.0025 0.0050 0.0075 0.0100
% of keywords
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GNNs: Neural Networks on Relational Data

Neural Networks Graph Neural Networks

Hidden layer Hidden layer
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Graph Neural Network Architecture

 Combine graph propagation w/ neural network operations

Input
Representations

New
Representations

@ Target vertex
@ Neighbors

Aggregation
(sum, LSTM, ...)

Neighbor Aggregation DNN Operations

Y



Challenges of GNN Computations on GPUs

Neural Networks

input layer

hidden layer 1 hidden layer 2

¥

Small and regular
intermediate data

Graph Neural Networks

Hidden layer Hidden layer

¢ c . Output
\//' RelU | o ReLU
RN SRR
. -\' . -\'

Large and irregular
intermediate data

Efficiency &

@ scalability

challenges
58



How to Design Systems for Graph Neural Networks

* New Programming Models (week 10): gather-apply-scatter programming
interface for distributed GNN

* New Systems Infrastructure (week 10): serverless computing for low-
cost GNN training
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Understand Our Applications:
An Overview of Deep Learning Models

Mixture-of-Experts
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Mixture-of-Experts

: make each expert focus on predicting the right answer for a

subset of cases

MoE MoE
layer layer

. /MoE layer \
G(x),| |G(X)
Expert 1 Expert 3 Expert n
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Switch Transformers = Transformers + Mixture of Experts

y

A

Add + Normalize

1

Switching FFN Layer

1

Add + Normalize

1

Self-Attention

yi (I TTTT] v[TTTTT]
A A
- >[ Add + Normalize }4

FFN 1 [ FFN 2
'ﬂ

][FFN3][FFN4] :)

______
-

-

s ;[ Add + Normalize }:
Self-Attention
A \
\
Positional 9 Positional 3
embedding Y embedding Y
x1 11111 x (11
More Parameters
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Recap: An Overview of Deep Learning Models

« Convolutional neural networks: various computer vision tasks
* Recurrent neural networks: processing sequences

» Transformers: efficient natural language processing

« Graph neural networks: deep learning on relational data

* Mixture of experts: ensemble deep learning

» A key takeaway: DNN techniques are not applied in isolation. Solving real-
world problems require ""clever” integration of DNN techniques
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Next Lecture: Deep Learnlng Systems

e ) [
HDSSSG uﬁg}g MJ ML MOdel ]M DBDMMQYH ﬂ}}ru
80— 88 B I \

Automatic Differentiation

Parallelization / Distributed Training We will learn the current design and
key techniques of each stack in ML
systems

Memory Optimizations
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