
Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Introduction to Deep Neural 
Networks

Zhihao Jia

Computer Science Department
Carnegie Mellon University

1
1/21/22



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Administrative

• Sign up for paper presentations (presentations start on week 3)

• Initial assignments will be released tonight

• First reading assignments due next Monday before lecture

• All lectures will be available on Canvas
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Content

• Stochastic Gradient Descent
• Backpropagation and Automatic Differentiation
• Understand Our Applications: An Overview of Neural Networks
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Recap: Deep Neural Network

• Collection of simple trainable mathematical units that work together to 
solve complicated tasks
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A tensor algebra operator 
(e.g., convolution, matrix mul)

A tensor (i.e., n-dimensional array)
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DNN Training Overview
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Gradient Descent (GD)

Train ML models through many iterations of 3 stages
1. Forward propagation: apply model to a batch of input samples and run 

calculation through operators to produce a prediction
2. Backward propagation: run the model in reverse to produce error for 

each trainable weight
3. Weight update: use the loss value to update model weights 

6

Forward propagation

Model inputs Model prediction
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Gradient Descent (GD)

Train ML models through many iterations of 3 stages
1. Forward propagation: apply model to a batch of input samples and run 

calculation through operators to produce a prediction
2. Backward propagation: run the model in reverse to produce a gradient 

for each trainable weight
3. Weight update: use the loss value to update model weights 
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Backward propagation

Model inputs Model prediction

𝜕𝐿(𝑤)
𝜕𝑤!
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Gradient Descent (GD)

Train ML models through many iterations of 3 stages
1. Forward propagation: apply model to a batch of input samples and run 

calculation through operators to produce a prediction
2. Backward propagation: run the model in reverse to produce a gradient 

for each trainable weight
3. Weight update: use the gradients to update model weights 
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Stochastic Gradient Descent (SGD)

• Inefficiency in gradient descent
• Too expensive to compute gradients for all training samples
• Especially for todays large-scale training datasets (e.g., ImageNet-22K 

with 14 million images)

• Stochastic gradient descent
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𝑏 is called batch size
𝑁 is the size of the 
entire training dataset
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Content

• Stochastic Gradient Descent
• How to compute gradients: Backpropagation and Automatic 

Differentiation
• Understand Our Applications: An Overview of Neural Networks
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How to compute gradients? Backpropagation

• Sum rule

• Product rule

• Chain rule
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Backpropagation: a simple example

• 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 (𝑥 + 𝑧)
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Each node is an intermediate variable. 
Computation graph (a DAG) with variable 
ordering from topological sort 
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Backpropagation: a simple example

• 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 (𝑥 + 𝑧)
• E.g., x = -2, y = 5, z = -4
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Each node is an intermediate variable. 
Computation graph (a DAG) with variable 
ordering from topological sort 
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Exercise: Compute !"
!#

• 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 (𝑥 + 𝑧)
• E.g., x = -2, y = 5, z = -4
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Each node is an intermediate variable. 
Computation graph (a DAG) with variable 
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Exercise: Compute !"
!$
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• 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 (𝑥 + 𝑧)
• E.g., x = -2, y = 5, z = -4
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Each node is an intermediate variable. 
Computation graph (a DAG) with variable 
ordering from topological sort 
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Exercise: Compute !"
!%
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• 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 (𝑥 + 𝑧)
• E.g., x = -2, y = 5, z = -4
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ordering from topological sort 



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Issues?

• If a model has 𝑛 input variables, we need 𝑛 forward passes to compute the 
gradient with respect to each input

• Deep learning models have large number of inputs (e.g., billions or up to 
trillions of trainable weights)

• Solution: reverse mode AutoDiff
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Reverse Mode Automatic Differentiation

• For each node 𝑣, we introduce an adjoint node �̅� corresponding to the 
gradient of output wrt to this node 9:9;

• Compute nodes’ gradients in a reverse topological order
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• 𝑙 = 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 (𝑥 + 𝑧)
• E.g., x = -2, y = 5, z = -4
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Discuss: Backpropagation v.s. Reverse AutoDiff
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Discuss: Backpropagation v.s. Reverse AutoDiff

• Complexity: backpropagation requires a forward-backward pass for each 
variable, while reverse AutoDiff only requires one forward-backward pass

• Optimization: reverse AutoDiff represents the forward-backward in a 
single computation graph, make it easier to apply graph-level optimizations

• Higher order derivatives: we can take derivative of derivative nodes in 
reserve AutoDiff, while it’s much harder to do so in backpropagation
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Higher Order Derivatives

28
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Reverse AutoDiff Implementation

29
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Forward/Backward Implementation

30
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Manual Gradient Checking: Numeric Gradient

• How do we check the correctness of our implementation?

• For small 𝛿, 9<9A! ≈
< ADEA! F<(AFEA!)

GE
• Pros: easy to implement 
• Cons: approximate and very expensive to compute; need to recompute 
𝑙 𝑥 + 𝛿𝑥H for every parameter

• Useful for checking the correctness of our implementation; serve as 
unit test in today’s DNN systems

31
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Summary

We have learnt a core technique of MLSys🎊

• Forward pass: apply model to a batch of input samples and run 
calculation through operators and save intermediate results

• Backward pass: run the model in reverse and apply chain rule to compute 
gradients

• Weight update: use the gradients to update model weights
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Understand Our Applications: 
An Overview of Deep Learning Models

33

• Convolutional Neural Networks
• Recurrent Neural Networks
• Transformers
• Graph Neural Networks
• Mixture-of-Experts
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CNNs are widely used in vision tasks

34

Classification Retrieval Detection

Segmentation Self-Driving Synthesis
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Recap: Convolution

• Convolve the filter with the image: slide over the image spatially and 
compute dot products

35
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CNNs

• A sequence of convolutional layers, interspersed by pooling, normalization, 
and activation functions

36[Zeiler and Fergus 2013]
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MLSys Challenges in CNNs: 
Increasing Computational Requirements

37
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MLSys Challenges in CNNs: 
Increasing Computational Requirements
• Computational cost: convolutions are extremely compute-intensive
• Memory requirement: high-resolution images cannot fit in a single GPU

• Solution: parallelize training across GPUs
• Week 6: Data and Model Parallelism for Distributed Training
• Week 6: Pipeline Parallelism for Distributed Training
• Week 7: Memory-Efficient Training

38
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MLSys Challenges in CNNs: Efficiency

• Efficiency: difficult to deploy most accurate CNNs on edge devices with 
limited compute resources, memory capacity, and energy

• Solution: model compression, efficient convolution algorithms, neural 
architecture search

• Week 11: Model Compression
• Week 4: ML Compilation
• Week 12: ML Hardware

39
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Understand Our Applications: 
An Overview of Deep Learning Models

40

• Convolutional Neural Networks: vision tasks
• Recurrent Neural Networks
• Transformer
• Graph Neural Networks
• Mixture-of-Experts
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Recurrent Neural Networks: Process Sequences

41

Vanilla Neural Networks
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Recurrent Neural Networks: Process Sequences

42

e.g., image captioning
Image -> sequence of words
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Recurrent Neural Networks: Process Sequences

43

e.g., action prediction
sequence of video frames -> action
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Recurrent Neural Networks: Process Sequences

44

Video captioning: sequence of
video frames -> sequence of words
Machine translation

Video classification 
on frames
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Recurrent Neural Networks

45

outputs[i]

Recurrent 
Neural 

Networks

inputs[i]

Key idea: RNNs have an 
internal state that is 
updated as a sequence 
is processed

Arbitrary number of outputs

Arbitrary number of inputs
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How to Represent RNNs in Computation Graphs

• Computation graphs must be direct acyclic graphs (DAGs) but RNNs have 
self loops

• Solution: unrolling RNNs (define maximum depth)

46
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When do we need RNNs?

• RNNs are designed to process sequences (texts, videos)
• RNNs are extremely useful when you want your model to have internal

states when a sequence is processed
• Commonly used in reinforcement learning (RL)

• Week 5: RL for device placement and graph optimizations

47
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Understand Our Applications: 
An Overview of Deep Learning Models

48

• Convolutional Neural Networks
• Recurrent Neural Networks
• Transformers
• Graph Neural Networks
• Mixture-of-Experts
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Inefficiency in RNNs?

• Problem: lack of parallelizability. Both forward and backward passes have 
O(sequence length) unparallelizable operators

• A state cannot be computed before all previous states have been 
computed

• Inhibits training on very long sequences

49
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Attention: Enable Parallelism within a Sequence

• Idea: treat each position’s representation as a query to access and 
incorporate information from a set of values

50

Layer 0

Attention Layer 1

Attention Layer 2
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Attention: Enable Parallelism within a Sequence

• Idea: treat each position’s representation as a query to access and 
incorporate information from a set of values

• Massively parallelizable: number of unparallelizable operations does not 
increase sequence length
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Layer 0

Attention Layer 1

Attention Layer 2
We will learn attention and
transformers in depth later:
• Self-attention
• Masked attention
• Multi-head attention

values

query
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MLSys Challenges: Exponentially Increasing
Computational Costs for Transformer Models

52

We have seen similar 
trend in CNNs before.
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How to Design Systems for Transformers Models?

• Memory efficiency (week 7): how to train large Transformers on GPUs 
with limited memory

• Distributed training (week 9): how to design customized parallelization 
strategies for multi-head attention computation

• Advanced model design (week 11): Switch Transformers = Transformers 
+ Mixture-of-Experts
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Understand Our Applications: 
An Overview of Deep Learning Models
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• Convolutional Neural Networks
• Recurrent Neural Networks
• Transformers
• Graph Neural Networks
• Mixture-of-Experts
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Graph Neural Networks: The Hottest Subfield in ML
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GNNs: Neural Networks on Relational Data
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Neural Networks Graph Neural Networks
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A

DNN Operations

Aggregation
(sum, LSTM, …)

Neighbor Aggregation

Graph Neural Network Architecture

• Combine graph propagation w/ neural network operations
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B

A

DC

Target vertex

Neighbors

Input
Representations

New
Representations
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Challenges of GNN Computations on GPUs
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Good efficiency 

Small and regular 
intermediate data 

Large and irregular 
intermediate data

Efficiency & 
scalability 
challenges

Neural Networks Graph Neural Networks



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

How to Design Systems for Graph Neural Networks

• New Programming Models (week 10): gather-apply-scatter programming 
interface for distributed GNN

• New Systems Infrastructure (week 10): serverless computing for low-
cost GNN training
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Understand Our Applications: 
An Overview of Deep Learning Models
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• Convolutional Neural Networks
• Recurrent Neural Networks
• Transformers
• Graph Neural Networks
• Mixture-of-Experts
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Mixture-of-Experts

• Key idea: make each expert focus on predicting the right answer for a 
subset of cases
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Switch Transformers = Transformers + Mixture of Experts
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Recap: An Overview of Deep Learning Models

• Convolutional neural networks: various computer vision tasks
• Recurrent neural networks: processing sequences
• Transformers: efficient natural language processing
• Graph neural networks: deep learning on relational data
• Mixture of experts: ensemble deep learning

• A key takeaway: DNN techniques are not applied in isolation. Solving real-
world problems require ``clever’’ integration of DNN techniques
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Next Lecture: Deep Learning Systems
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ML Model
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Automatic Differentiation 

Graph-Level Optimization

Parallelization / Distributed Training

Data Layout and Placement

Kernel Optimizations

Memory Optimizations

We will learn the current design and 
key techniques of each stack in ML 
systems 


