Introduction to Deep Learning Systems

Zhihao Jia

Computer Science Department Carnegie Mellon University

Administrative

- Paper presentation assignments available on the website
 - Discuss with your partner on how you would like to deliver the presentation
- First reading assignments due next Monday before lecture

Recap: Deep Learning Systems

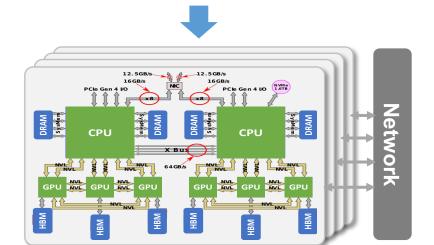
Automatic Differentiation

Graph-Level Optimization

Parallelization / Distributed Training

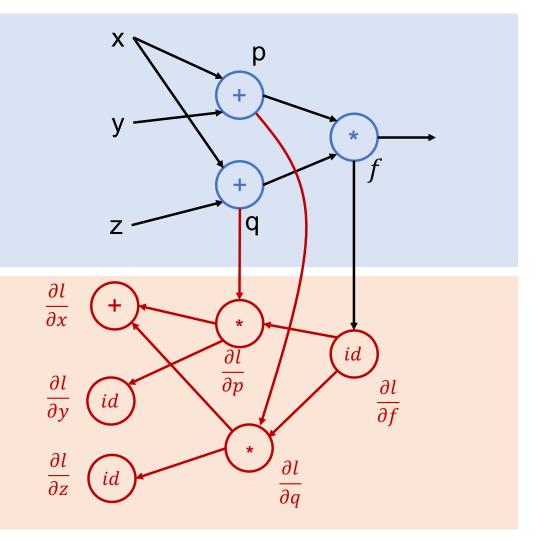
Code Optimization

Memory Optimization



Recap: Automatic Differentiation

Automatically construct backward computation graph

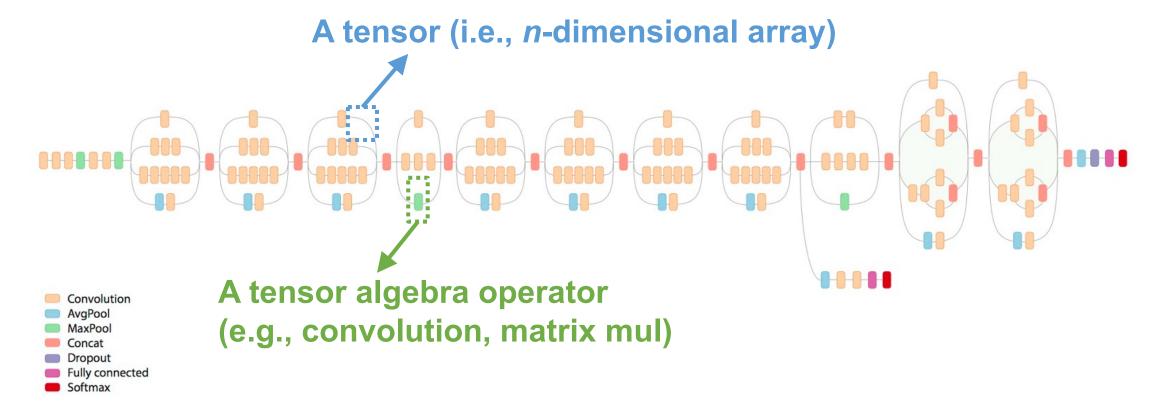


Forward computation graph

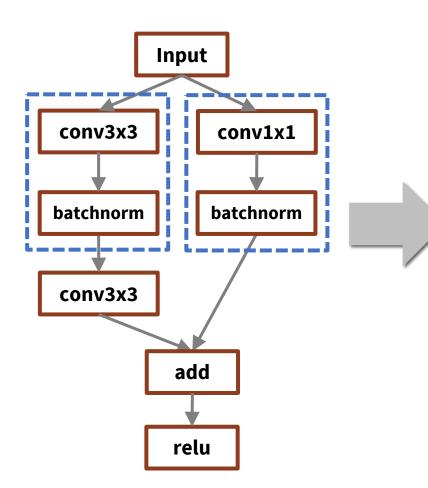
Backward computation graph

Recap: Deep Neural Network

 Collection of simple trainable mathematical units that work together to solve complicated tasks

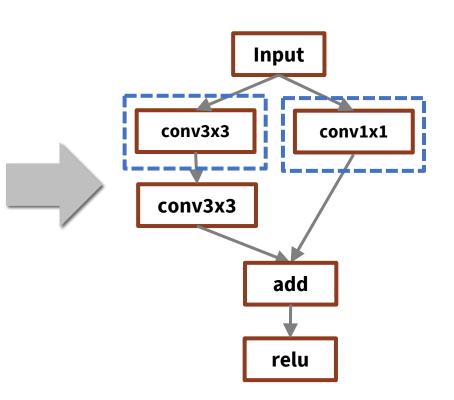


Graph-Level Optimizations



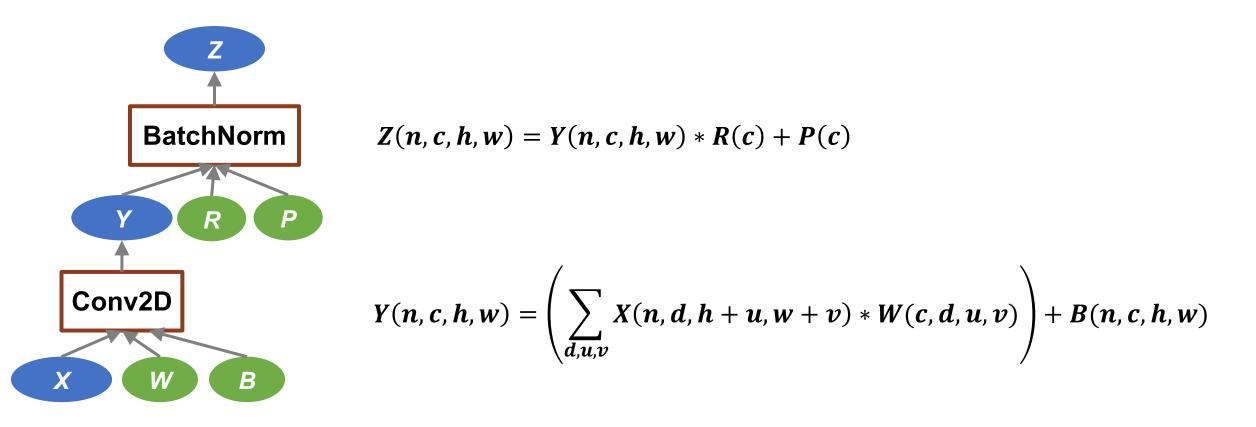
Fuse conv + batchnorm

conv



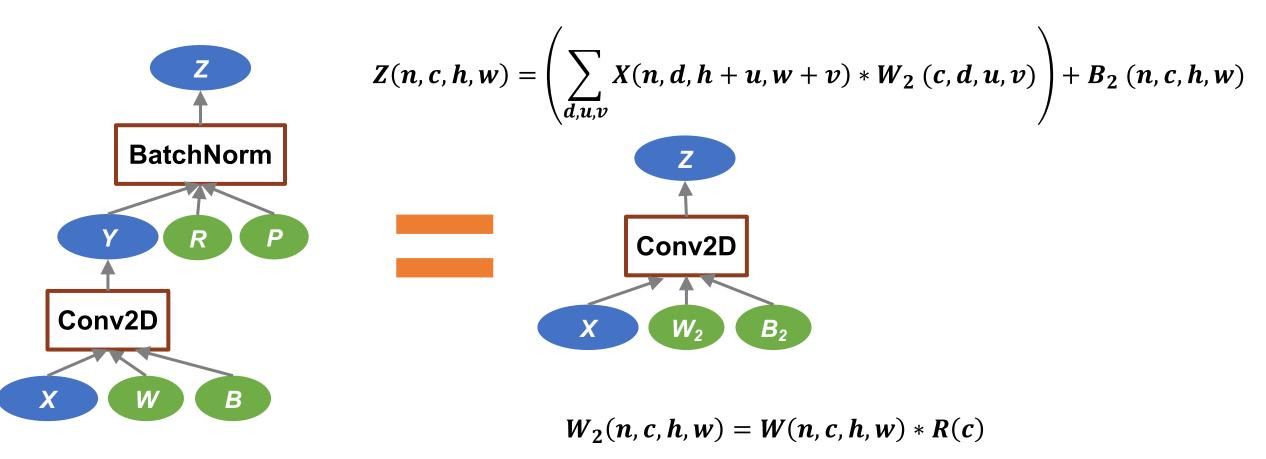
Input Computation Graph Optimized Computation Graph

Example: Fusing Conv and Batch Normalization



W, B, R, P are constant pre-trained weights

Fusing Conv and BatchNorm



 $B_2(n,c,h,w) = B(n,c,h,w) * R(c) + P(c)$

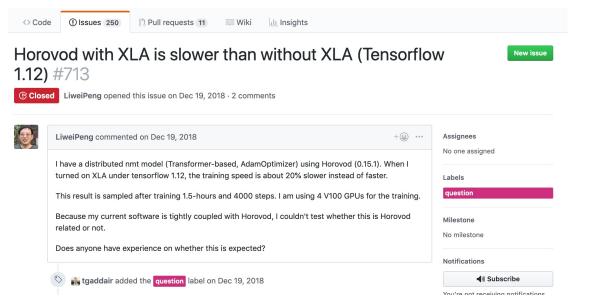
Current Rule-based Graph Optimizations Fuse conv + relu **TensorFlow currently** Fuse conv + includes ~<u>200</u> rules batch normalization (~<u>53,000</u> LOC) Fuse multi. convs **Rule-based Optimizer**

<pre>namespace tensorflow { namespace graph_transforms {</pre>
<pre>// Converts Conv2D or MatMul ops followed by column-wise Muls into equivalent // ops with the Mul baked into the convolution weights, to save computation // during inference.</pre>
<pre>Status FoldBatchNorms(const GraphDef& input_graph_def,</pre>
GraphDef replaced_graph_def; TF_RETURN_IF_ERROR(ReplaceWatchingOpTypes(input_graph_def, // clang-format off {"Wul", // mul_node
{ {"Conv2D MatMul DepthwiseConv2dNative", // conv_node {
<pre>{"*"}, // input_node {"Const"}, // weights_node</pre>
} } {"Const"}, // mul_values_node
<pre>}, // clang-format on [](const NodeMatch& match, const std::set<string>& input_nodes,</string></pre>
<pre>// Check that nodes that we use are not used somewhere else. for (const auto& node : {conv_node, weights_node, mul_values_node}) { if (output_nodes.count(node.name())) { // Return original nodes. new_nodes-send(), {mul_node, conv_node, input_node, weights_node, mul_values_node}; } </pre>
<pre>return Status::OK(); }</pre>
Tensor weights = GetNodeTensorAttr(weights_node, "value"); Tensor mul_values = GetNodeTensorAttr(mul_values_node, "value");
<pre>// Make sure all the inputs really are vectors, with as many entries as // there are columns in the weights. int64 weights_cols; if (conv_node.op() == "Conv2D") { weights_cols = weights.shape().dim_size(3); } else if (conv_node.op() == "DepthwlseConv2dNative") { weights_cols = weights_shape().dim_size(2) * weights.shape().dim_size(3);</pre>
<pre>} else { weights_cols = weights.shape().dim_size(1);</pre>
<pre>} if ((mul_values.shape().dims() != 1) (mul_values.shape().dim_size(0) != weights_cols)) { return errors:InvalidArgument("Mul constant input to batch norm has bad shape: ", mul_values.shape().DebugString()); }</pre>
<pre>// Multiply the original weights by the scale vector. auto weights_vector = weights.flat<float>(); Tensor scaled_weights(DT_FLOAT, weights.shape()); auto scaled_weights_vector = scaled_weights.flat<float>(); for (int64 row = 0; row < weights_vector.dimension(0); ++row) { scaled_weights_vector(row) = weights_vector(row) * mul_values.flat<float>()(row % weights_cols); } </float></float></float></pre>
<pre>// Construct the new nodes, NodeDef scaled_weights_node; scaled_weights_node.set_op("Const"); scaled_weights_node.set_name(weights_node.name()); SetNodeAttr("dtype", DT_FLOAT, &scaled_weights_node); SetNodeTensorAttr<float("value", &scaled_weights_node);<br="" scaled_weights,="">new_nodes->push_back(scaled_weights_node);</float("value",></pre>
<pre>new_nodes->push_back(input_node);</pre>
NodeDef new_conv_node; new_conv_node = conv_node; new_conv_node.set_name(mul_node.name()); new_nodes->push_back(new_conv_node);
<pre>return Status::OK(); }.</pre>
<pre>},</pre>
<pre>REGISTER_GRAPH_TRANSFORM("fold_batch_norms", FoldBatchNorms);</pre>
<pre>} // namespace graph_transforms } // namespace tensorflow</pre>

Limitations of Rule-based Optimizations

Robustness

Experts' heuristics do not apply to all models/hardware



When I turned on XLA (TensorFlow's graph optimizer), the training speed is about 20% slower

🖄 stack overflow	Search
Home	Tensorflow XLA makes it slower?
PUBLIC	I am writing a very simple tensorflow program with XLA enabled. Basically it's something like:
Tags	import tensorflow as tf
Users Jobs	<pre>def ChainSoftMax(x, n) tensor = tf.nn.softmax(x) for i in range(n-1): tensor = tf.nn.softmax(tensor) return tensor</pre>
Teams Q&A for work	<pre>config = tf.ConfigProto() config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1</pre>
Learn More	<pre>input = tf.placeholder(tf.float32, [1000]) feed = np.random.rand(1000).astype('float32')</pre>
	<pre>with tf.Session(config=config) as sess: res = sess.run(ChainSoftMax(input, 2000), feed_dict={input: feed})</pre>
	Basically the idea is to see whether XLA can fuse the chain of softmax together to avoid multiple kernel launches. With XLA on, the above program is almost 2x slower than that without XLA on a machine with a GPU card. In my gpu profile, I saw XLA produces lots of kernels named as "reduce_xxx" and "fusion_xxx" which seem to overwhelm the overall runtime. Any one know what happened here?

With XLA, my program is almost 2x slower than without XLA

Limitations of Rule-based Optimizations

Robustness

Experts' heuristics do not apply to all models/hardware

Scalability

New operators and graph structures require more rules

TensorFlow currently uses ~4K LOC to optimize convolution

Limitations of Rule-based Optimizations

Robustness

Experts' heuristics do not apply to all models/hardware

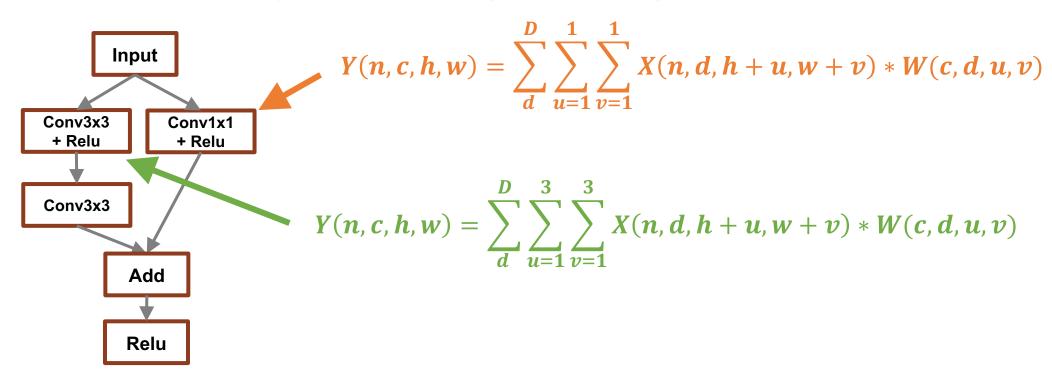
Scalability

New operators and graph structures require more rules

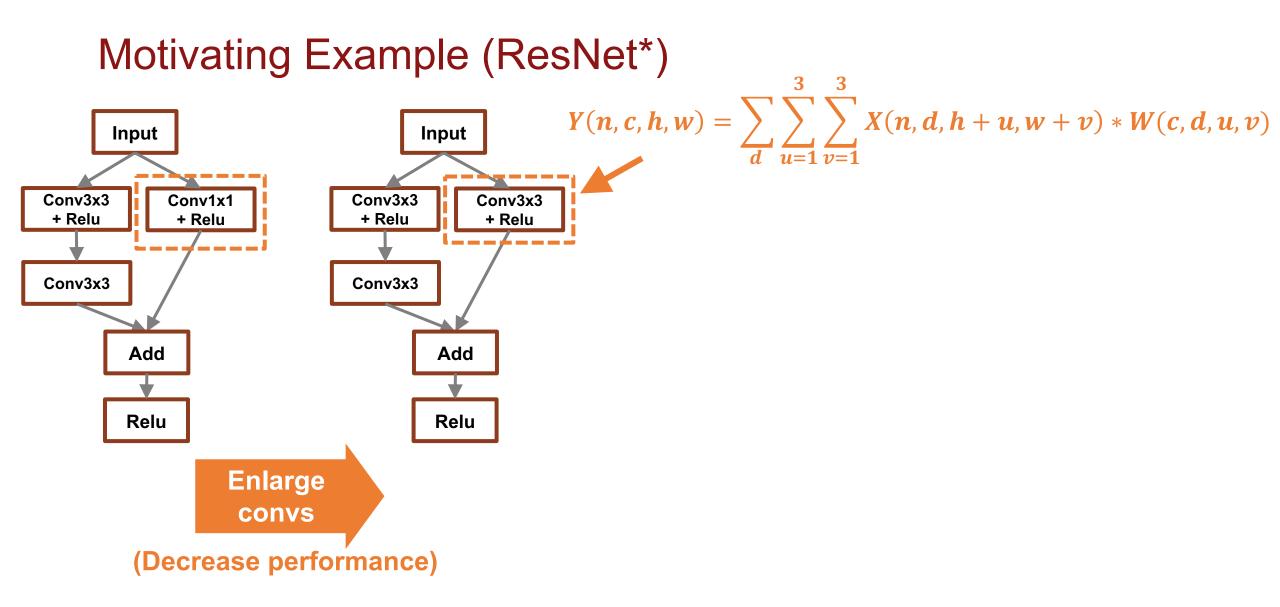
Performance

Miss subtle optimizations for specific models/hardware

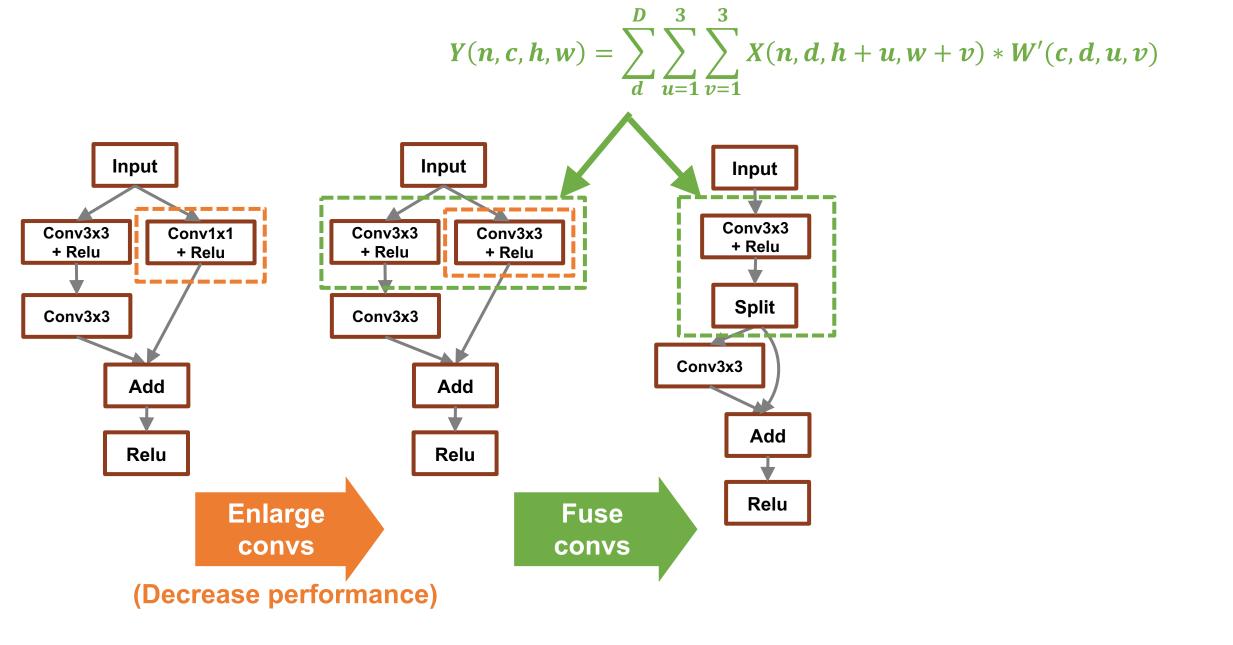
Motivating Example (ResNet*)



* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

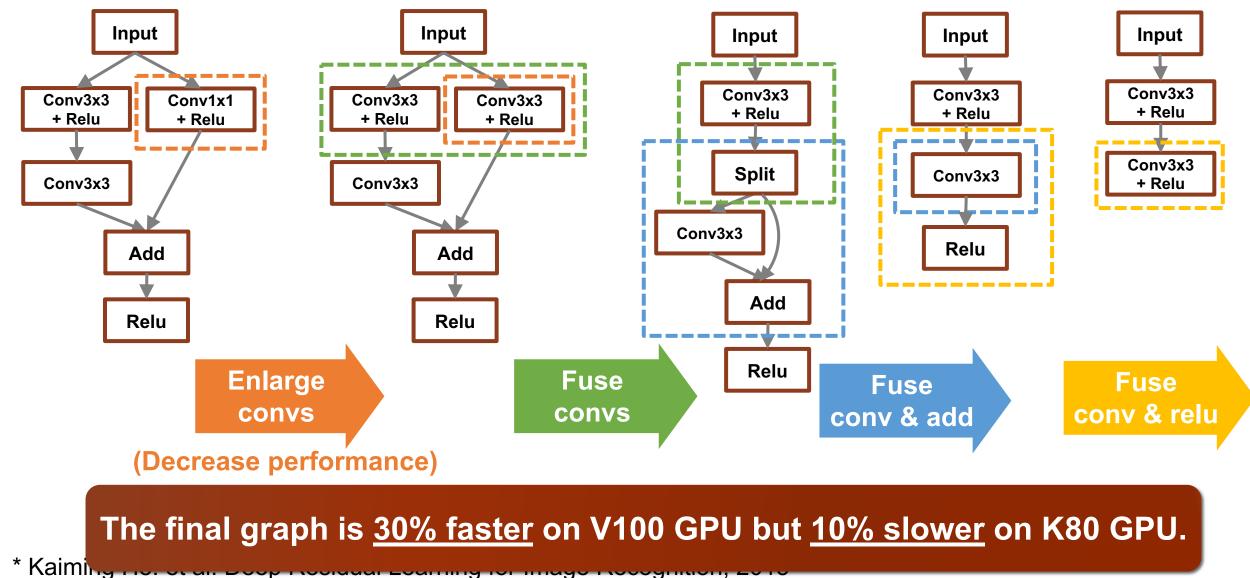


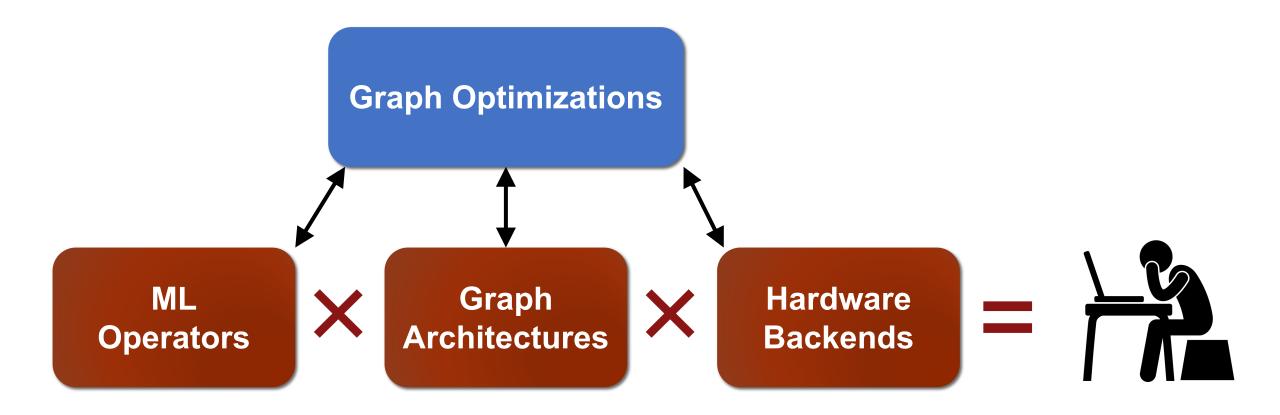
* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015



* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

Motivating Example (ResNet*)

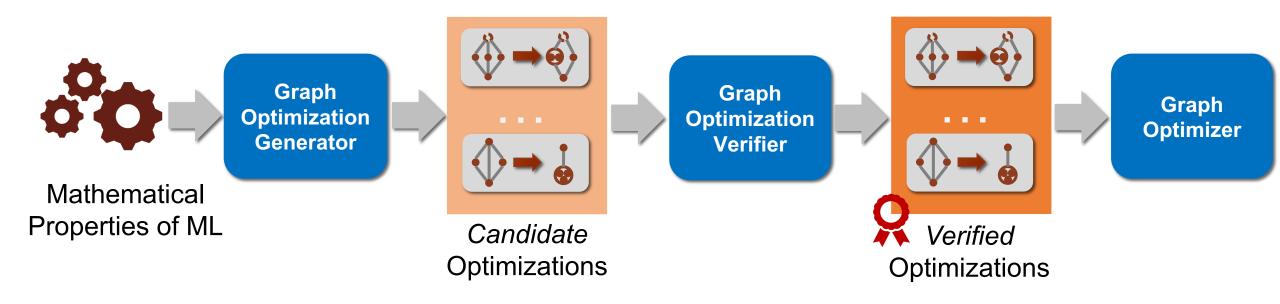




Infeasible to manually design graph optimizations for all cases

Automated Generation and Verification of Graph Optimizations

- Week 5: Graph-Level Optimizations
- Week 5: RL for Device Placement and Graph Optimizations



An Overview of Deep Learning Systems

Automatic Differentiation

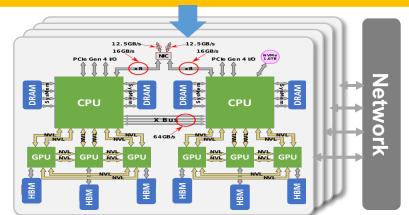
Graph-Level Optimization

Parallelization / Distributed Training

Data Layout and Placement

Kernel Optimizations

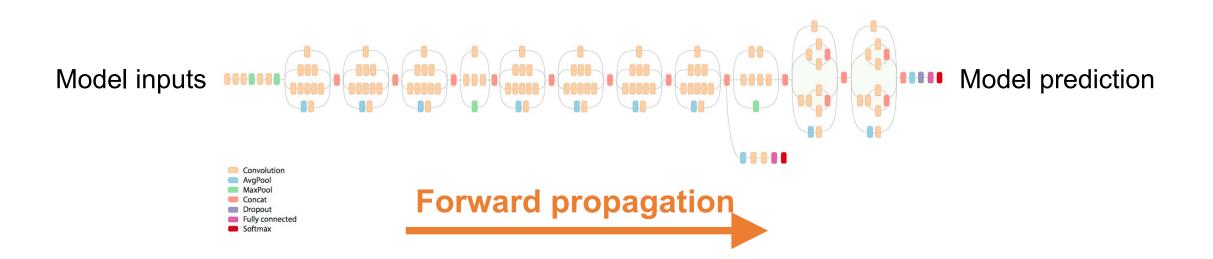
Memory Optimizations



Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

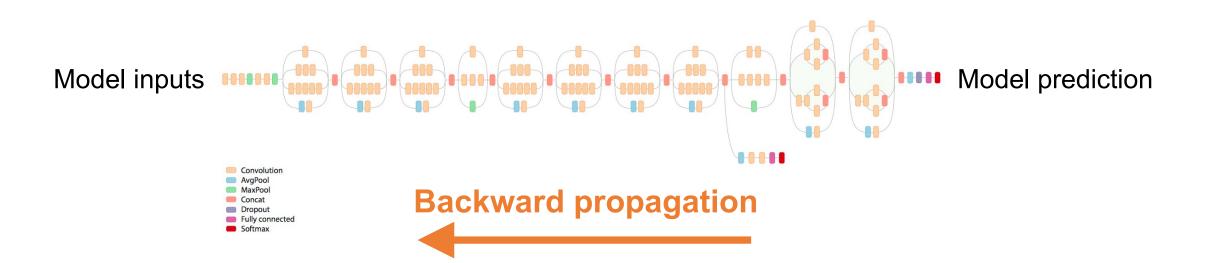
- 1. Forward propagation: apply model to a batch of input samples and run calculation through operators to produce a prediction
- 2. Backward propagation: run the model in reverse to produce error for each trainable weight
- 3. Weight update: use the loss value to update model weights



Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

- 1. Forward propagation: apply model to a batch of input samples and run calculation through operators to produce a prediction
- 2. Backward propagation: run the model in reverse to produce error for each trainable weight
- 3. Weight update: use the loss value to update model weights



Recap: Stochastic Gradient Descent (SGD)

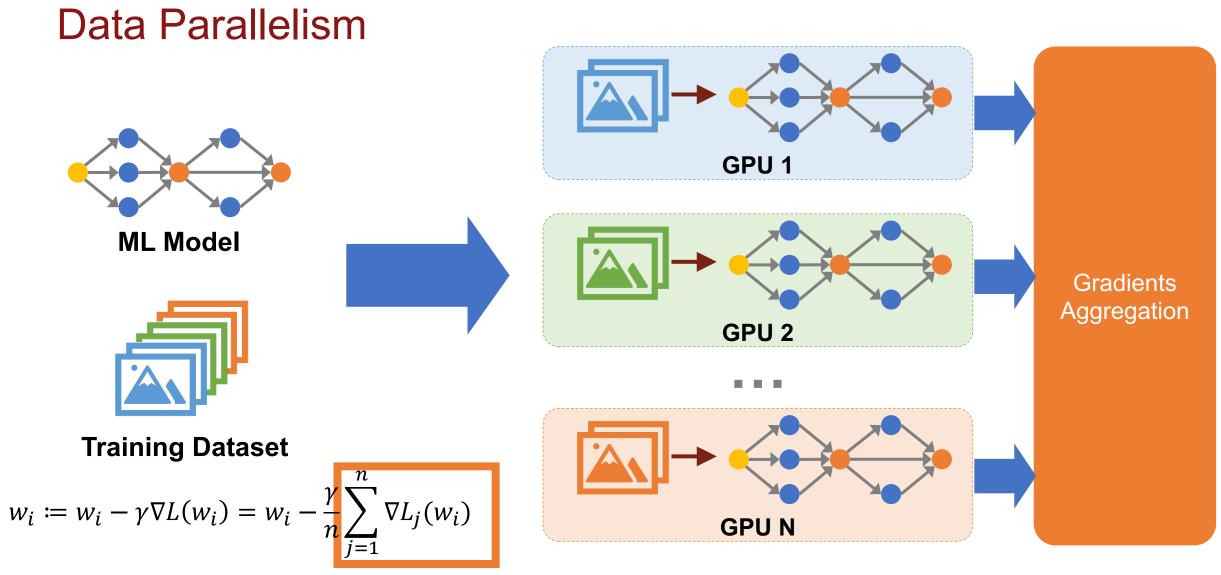
Train ML models through many iterations of 3 stages

- 1. Forward propagation: apply model to a batch of input samples and run calculation through operators to produce a prediction
- 2. Backward propagation: run the model in reverse to produce error for each trainable weight
- 3. Weight update: use the loss value to update model weights

$$w_i \coloneqq w_i - \gamma \nabla L(w_i) = w_i - \frac{\gamma}{n} \sum_{j=1}^n \nabla L_j(w_i)$$

How can we parallelize ML training?

$$w_i \coloneqq w_i - \gamma \nabla L(w_i) = w_i - \frac{\gamma}{n} \sum_{j=1}^n \nabla L_j(w_i)$$

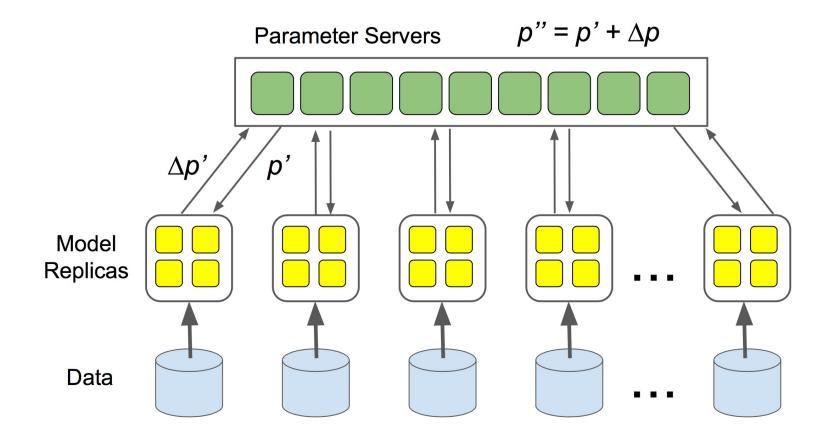


1. Partition training data into batches

2. Compute the gradients of each batch on a GPU

3. Aggregate gradients across GPUs

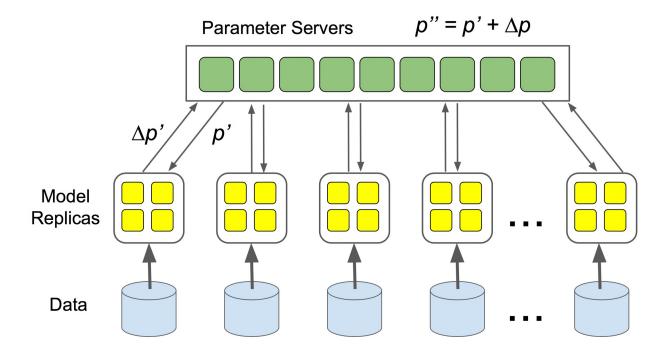
Data Parallelism: Parameter Server



Workers push gradients to parameter servers and pull updated parameters back

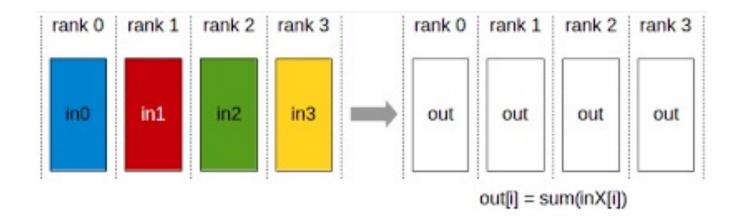
Inefficiency of Parameter Server

- Centralized communication: all workers communicate with parameter servers for weights update; cannot scale to large numbers of workers
- How can we decentralize communication in DNN training?



Inefficiency of Parameter Server

- Centralized communication: all workers communicate with parameter servers for weights update; cannot scale to large numbers of workers
- How can we decentralize communication in DNN training?
- AllReduce: perform element-wise reduction across multiple devices

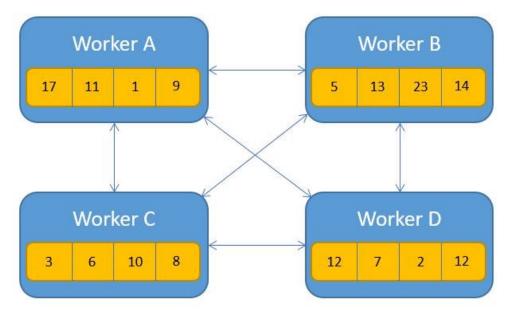


Different Ways to Perform AllReduce

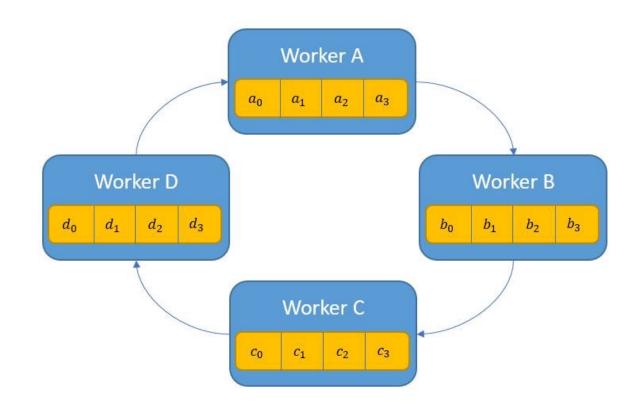
- Naïve AllReduce
- Ring AllReduce
- Tree AllReduce
- Butterfly AllReduce

Naïve AllReduce

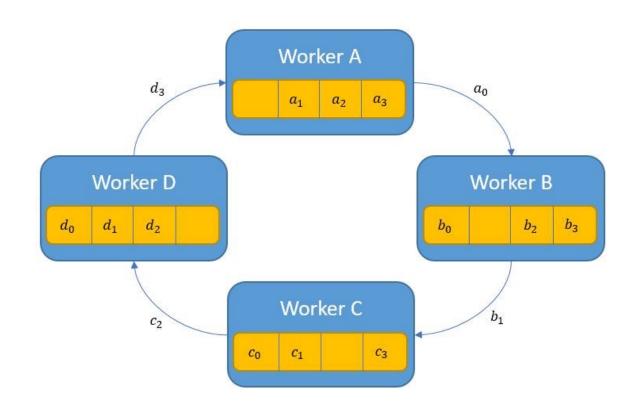
- Each worker can send its local gradients to all other workers
- If we have N workers and each worker contains M parameters
- Overall communication: N * (N-1) * M parameters
- Issue: each worker communicates with all other workers; have the same scalability issue as parameter server



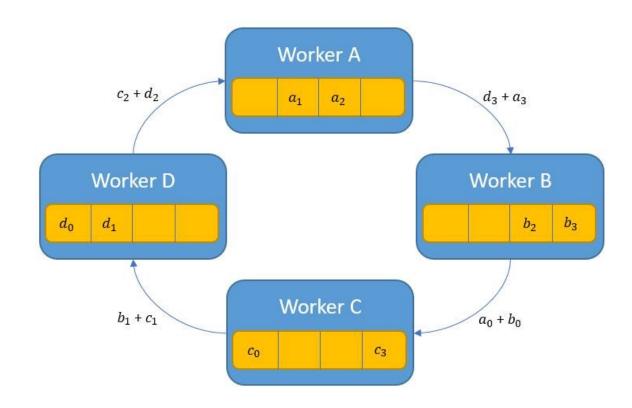
- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times



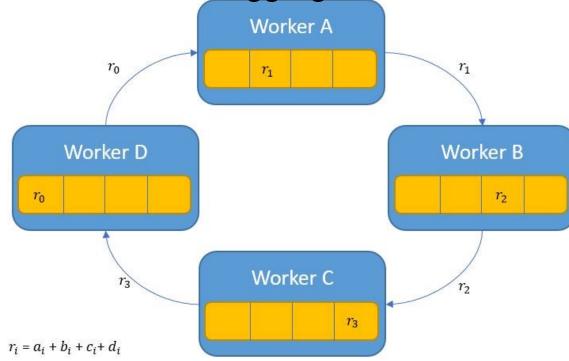
- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times



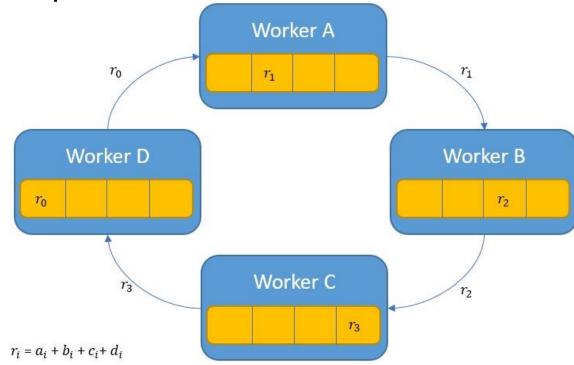
- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times



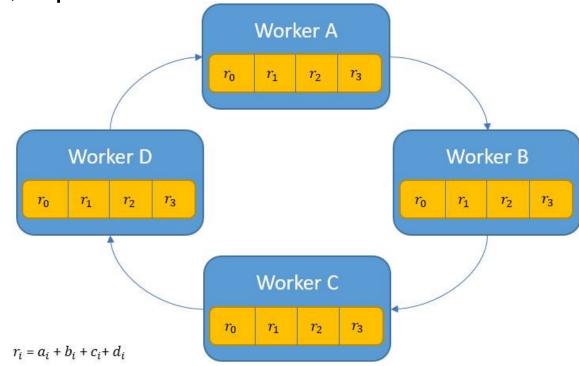
- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times
- After step 1, each worker has the aggregated version of M/N parameters



- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times
- Step 2 (Broadcast): each worker send one slice of aggregated parameters to the next worker; repeat N times



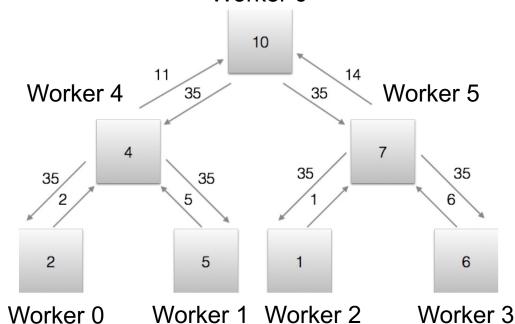
- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times
- Step 2 (Broadcast): each worker send one slice of aggregated parameters to the next worker; repeat N times



- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times
- Step 2 (Broadcast): each worker send one slice of aggregated parameters to the next worker; repeat N times
- Overall communication: 2 * M * N parameters
 - Aggregation: M * N parameters
 - Broadcast: M * N parameters

Tree AllReduce

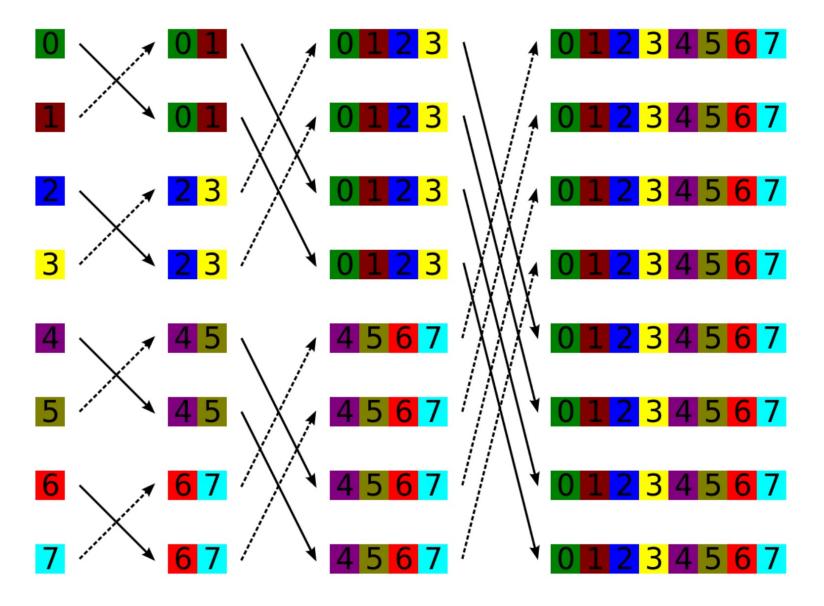
- Construct a tree of N workers;
- Step 1 (Aggregation): each worker sends M parameters to its parent; repeat log(N) times
- Step 2 (Broadcast): each worker sends M parameters to its children; repeat log(N) times
 Worker 6



Tree AllReduce

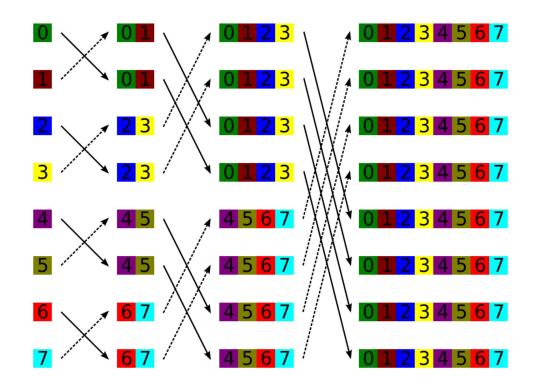
- Construct a tree of N workers;
- Step 1 (Aggregation): each worker sends M parameters to its parent; repeat log(N) times
- Step 2 (Broadcast): each worker sends M parameters to its children; repeat log(N) times
- Overall communication: 2 * N * M parameters
 - Aggregation: M * N parameters
 - Broadcast: M * N parameters

Butterfly Network



Butterfly AllReduce

- Repeat log(N) times:
 - 1. Each worker sends M parameters to its target node in the butterfly network
 - 2. Each worker aggregates gradients locally
- Overall communication: N * M * log(N) parameters



Comparing different AllReduce Methods

	Parameter Server		Ring AllReduce	Tree AllReduce	Butterfly AllReduce
Overall communicatio n	$2 \times N \times M$	$N^2 \times M$	$2 \times N \times M$	$2 \times N \times M$	$N \times M$ $\times \log N$

Question: Ring AllReduce is more efficient and scalable then Tree AllReduce and Parameter Server, why?

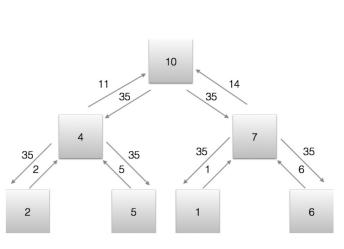
Ring AllReduce v.s. Tree AllReduce v.s. Parameter Server

Ring AllReduce:

- **Best latency** •
- Balanced workload across workers
- More scalable since each worker sends 2^{*}M parameters (independent to the number of workers)

Model

Data



 $p'' = p' + \Delta p$ Parameter Servers Replicas

All workers send M parameters to parameter servers and receive M parameters from servers Latency: M * N / bandwidth

Each worker sends M/N parameters per iteration; repeat for 2*N iterations Latency: M/N * (2*N) / bandwidth

Worker A

Worker C

 r_0 r_1 r_2 r_3

Worker D

 $r_i = a_i + b_i + c_i + d_i$

 $r_1 r_2 r_3$

 r_1 r_2 r_3

Worker B

 r_1 r_2 r_3

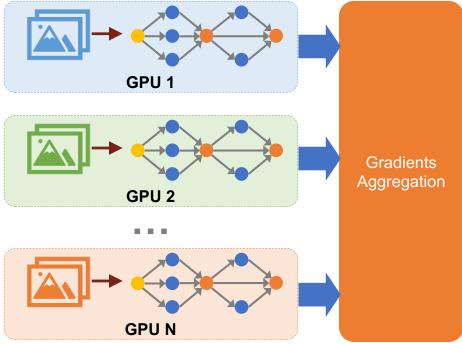
Each worker sends M parameters per iteration; repeat for 2*log(N) iterations Latency: M * 2 * log(N) / bandwidth

Recap: Data Parallelism

Each worker keeps a replica of the entire model and communicates with other workers to synchronize weights updates

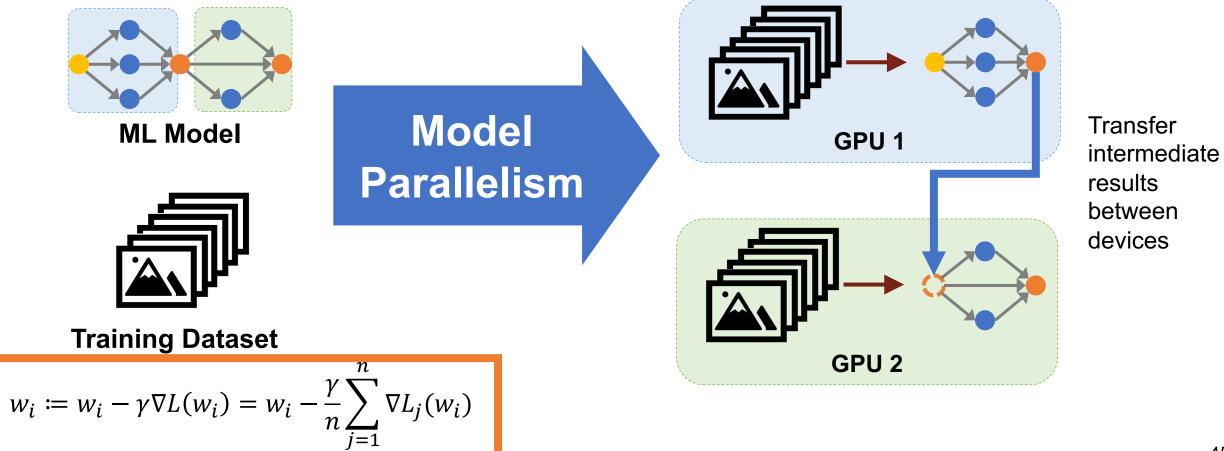
Gradients aggregation methods:

- Parameter Server
- Ring AllReduce
- Tree AllReduce
- Butterfly AllReduce
- Etc.

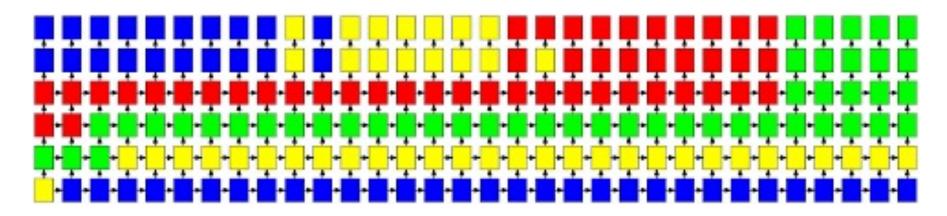


Model Parallelism

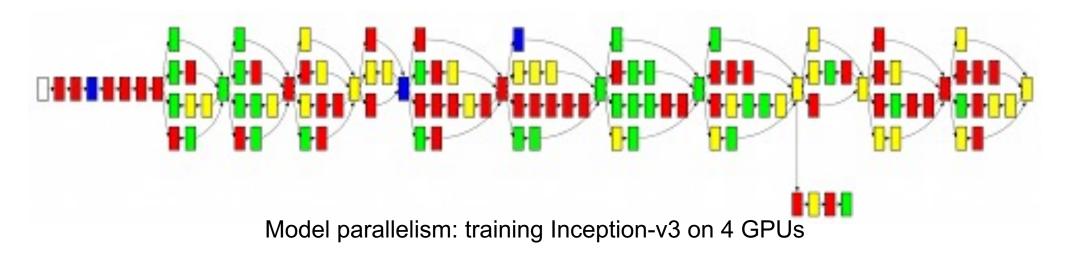
• Split a model into multiple subgraphs and assign them to different devices



Model Parallelism



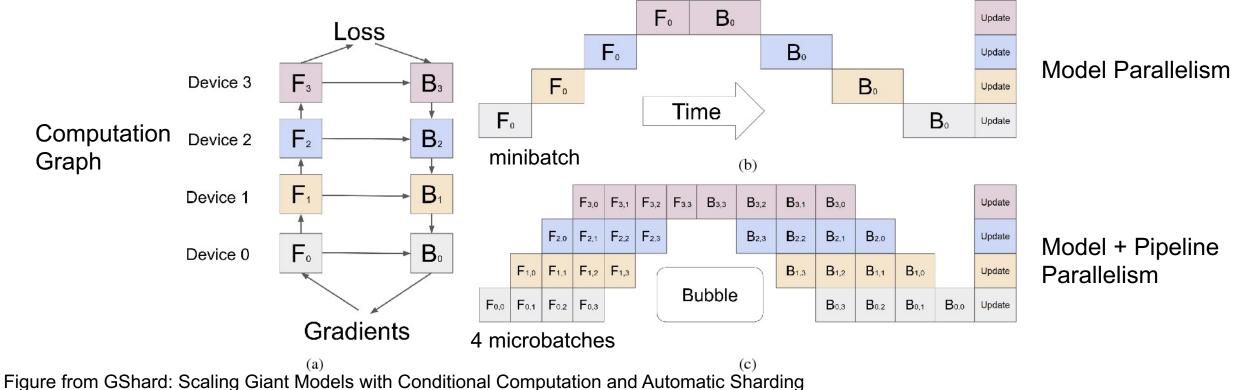
Model parallelism: training a RNN on 4 GPUs



Device placement optimization with reinforcement learning. A Mirhoseini et al.

Pipeline Parallelism

- Divide a mini-batch into multiple micro-batches
- Pipeline the forward/backward computations across micro-batches
- Generally combined with model parallelism

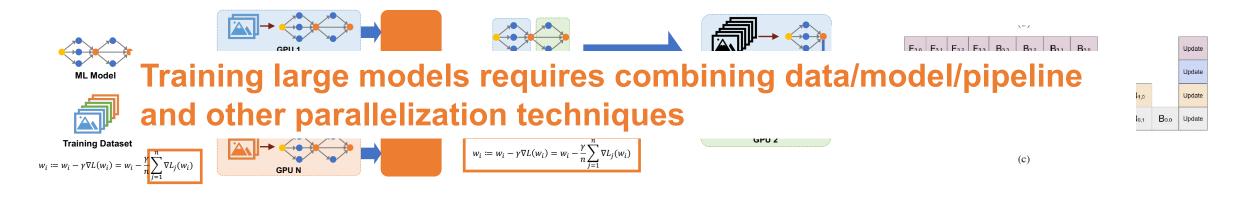


Comparing Data/Model/Pipeline Parallelism



	Data Parallelism	Model Parallelism	Pipeline Parallelism
Pros	 ✓ Massively parallelizable ✓ Require no communication during forward/backward 	 ✓ Support training large models ✓ Efficient for models with large numbers of parameters 	 ✓ Support large-batch training
Cons	 Do not work for models that cannot fit on a GPU Do not scale for models with large numbers of parameters 	 Limited parallelizability; cannot scale to large numbers of GPUs Need to transfer intermediate results in forward/backward 	 Limited utilization: bubbles in forward/backward

Comparing Data/Model/Pipeline Parallelism



	Data Parallelism	Model Parallelism	Pipeline Parallelism
Pros	 ✓ Massively parallelizable ✓ Require no communication during forward/backward 	 ✓ Support training large models ✓ Efficient for models with large numbers of parameters 	 ✓ Support large-batch training
Cons	 Do not work for models that cannot fit on a GPU Do not scale for models with large numbers of parameters 	 Limited parallelizability; cannot scale to large numbers of GPUs Need to transfer intermediate results in forward/backward 	 Limited utilization: bubbles in forward/backward

An Overview of Deep Learning Systems

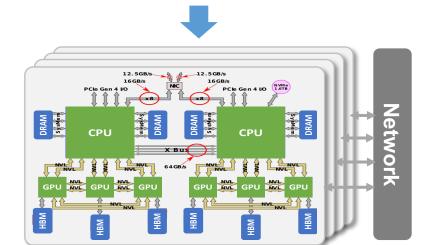
Automatic Differentiation

Graph-Level Optimization

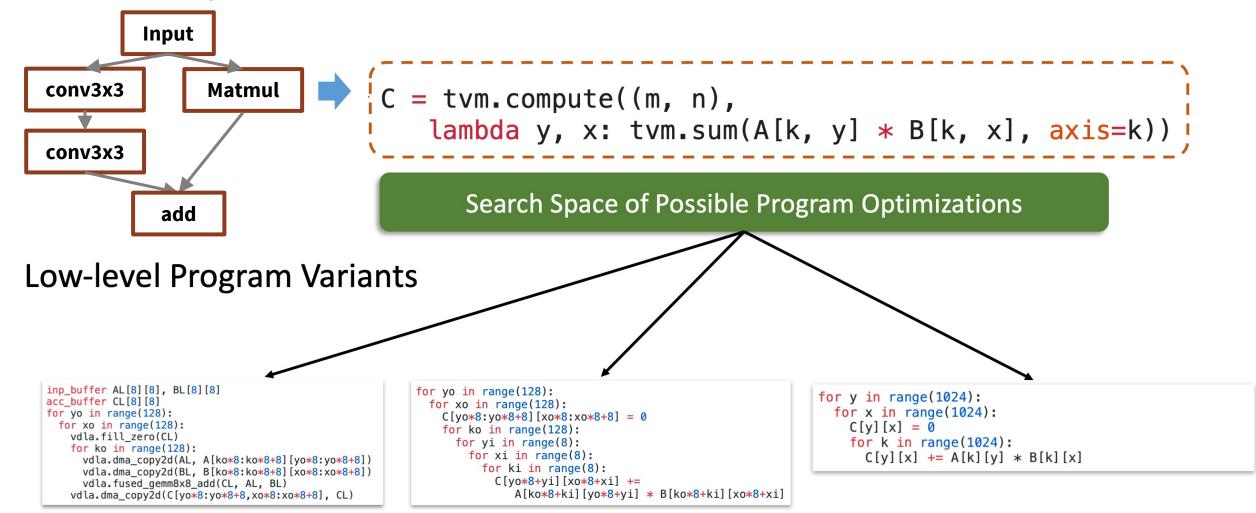
Parallelization / Distributed Training

Code Optimization

Memory Optimization



Code Optimization: How to find performant programs for each operator?



* Slides from Tianqi Chen

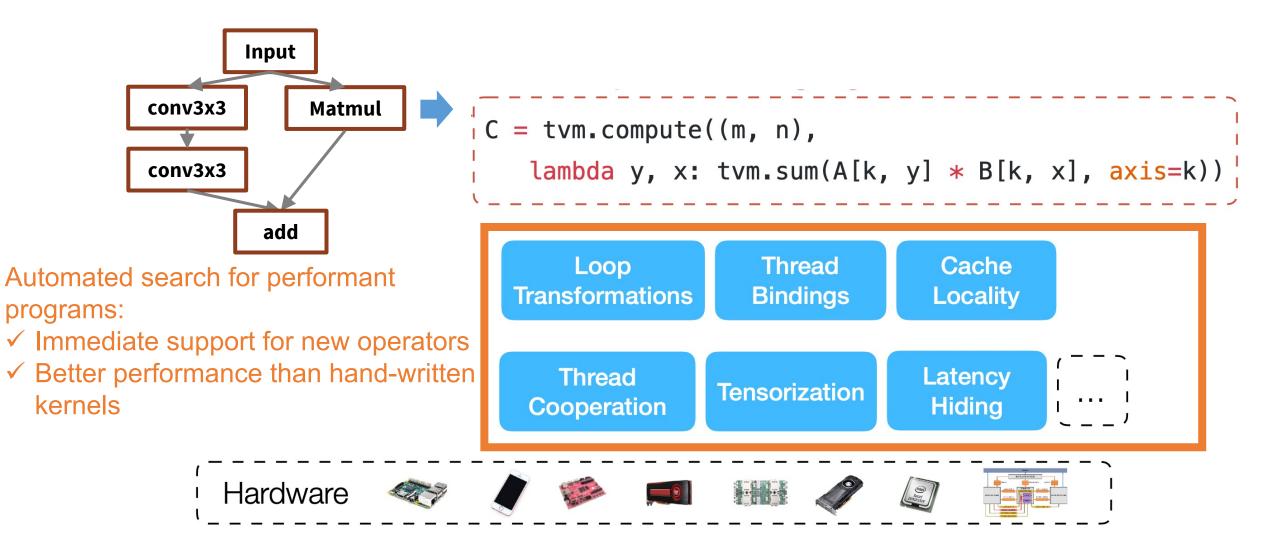
Existing Approach: Engineer Optimized Tensor Programs

- Hardware vendors provide operator libraries manually developed by software/hardware engineers
- cuDNN, cuBLAS, cuRAND, cuSPARSE for GPUs
 - cudnnConvolutionForward() for convolution
 - cublasSgemm() for matrix multiplication

Issues:

- Cannot provide immediate support for new operators
- Increasing complexity of hardware -> hand-written kernels are suboptimal

Automated Code Generation



An Overview of Deep Learning Systems

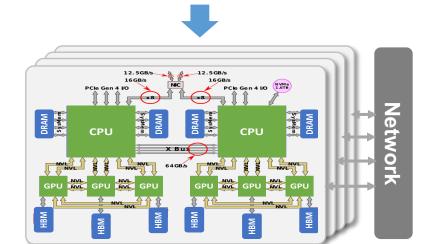
Automatic Differentiation

Graph-Level Optimization

Parallelization / Distributed Training

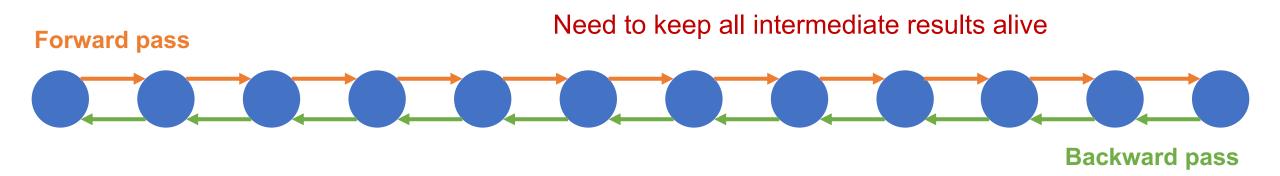
Code Optimization

Memory Optimization

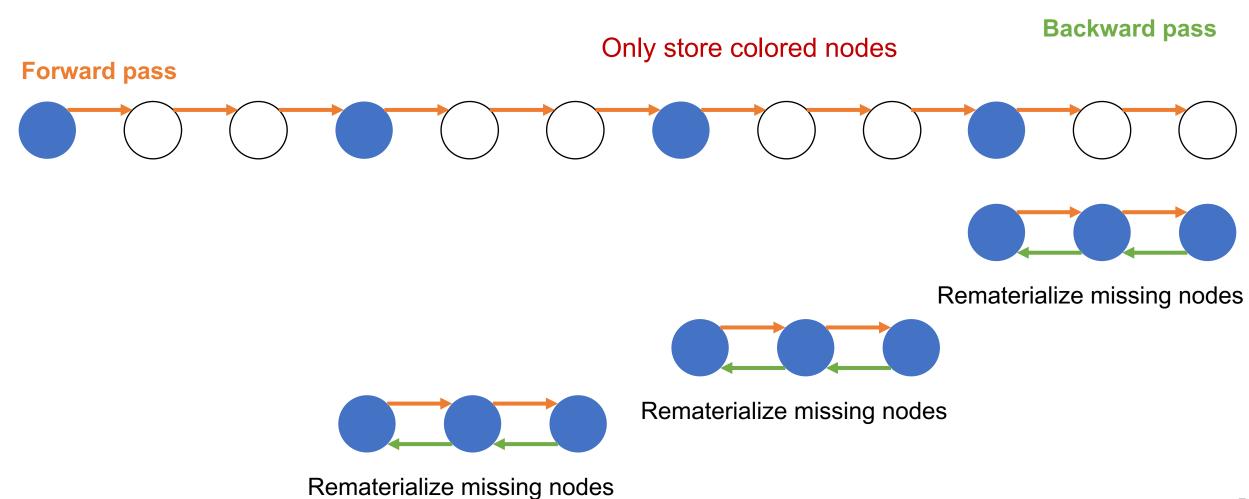


Recap: GPU Memory is the Bottleneck in DNN Training

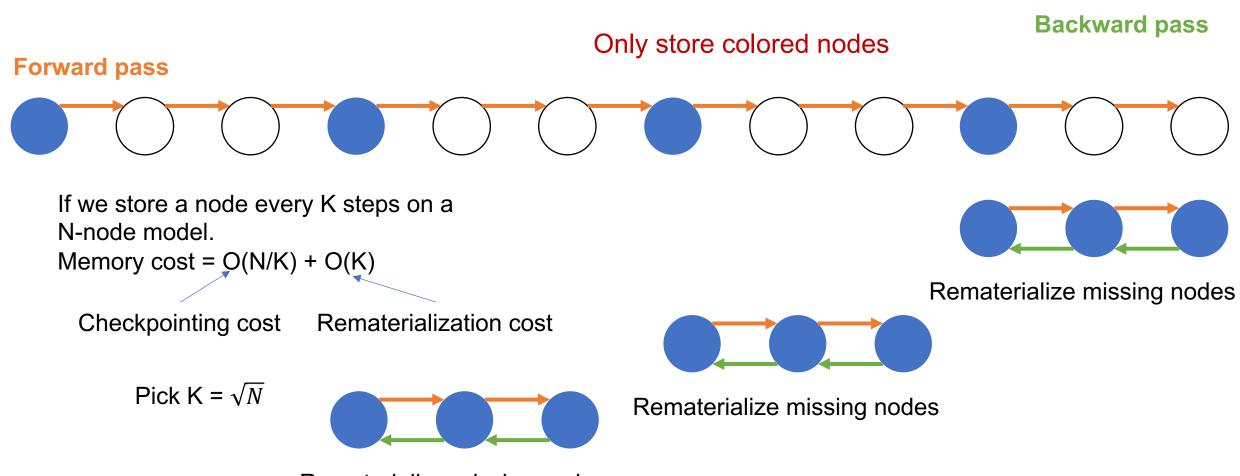
- The biggest model we can train is bounded by GPU memory
- Larger models often achieve better predictive performance
- Extremely critical for modern accelerators with limited on-chip memory



Memory Efficient Training: Tensor Rematerialization

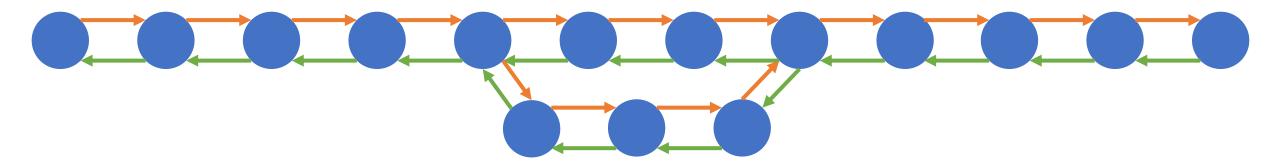


Memory Efficient Training : Tensor Rematerialization



Rematerialize missing nodes

Memory Efficient Training : Tensor Rematerialization



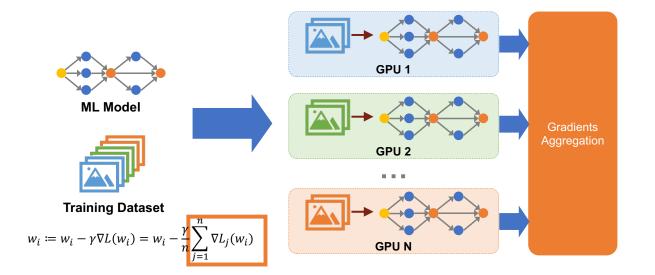
Nodes may have non-linear topology and non-uniform memory costs

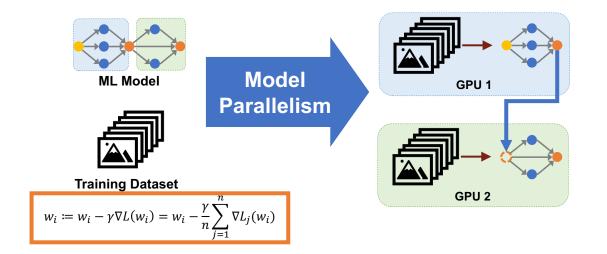
Formalize this as a mixed integer linear programming (MILP) problem and use an existing MILP solver.

We will learn this on week 7.

Memory Efficiency: Zero Redundancy

• In distributed training, data/model/pipeline parallelism all involve redundancy





Data parallelism replicates model parameters

Model/pipeline parallelism replicate intermediate tensors

Memory Efficient Training : Zero Redundancy

- Key idea: partition replicated parameters, gradients, and optimizer states across GPUs
- When needed, each GPU broadcast its local parameters/gradients to all other GPUs

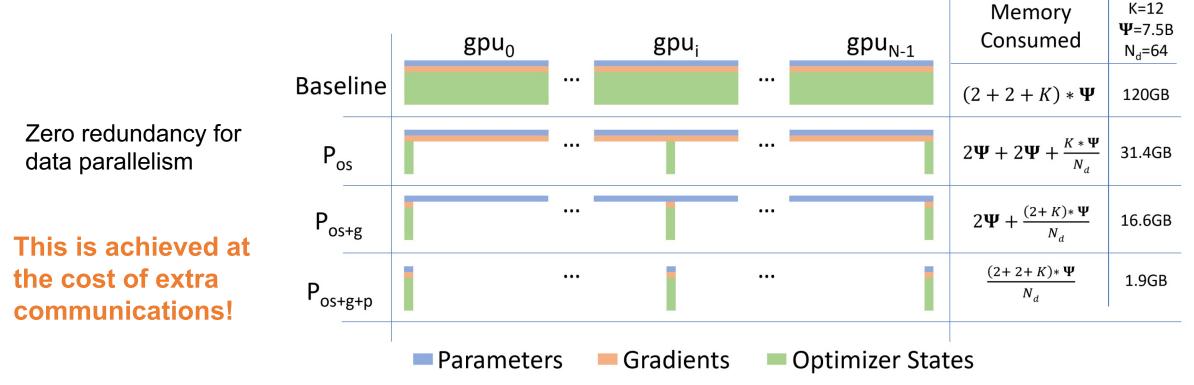


Figure from ZeRO: Memory Optimizations Toward Training Trillion Parameter Models

Balancing Computation/Memory/Communication Cost in DNN Training

