
Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Introduction to
Deep Learning Systems

Zhihao Jia

Computer Science Department
Carnegie Mellon University

1
1/25/22

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Administrative

• Paper presentation assignments available on the website
• Discuss with your partner on how you would like to deliver the

presentation

• First reading assignments due next Monday before lecture

2

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Deep Learning Systems

3

ML Model

N
etw

ork

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

Automatic Differentiation

Graph-Level Optimization

Parallelization / Distributed Training

Code Optimization

Memory Optimization

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Automatic Differentiation

4

+

x

y *

z

!
q
+

p

!"
!#

$%

!"
!&

*

*
!"
!'

+!"
!(

!"
!) $%

!"
!* $%

Forward
computation
graph

Backward
computation
graph

Automatically
construct backward
computation graph

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Deep Neural Network

• Collection of simple trainable mathematical units that work together to
solve complicated tasks

5

A tensor algebra operator
(e.g., convolution, matrix mul)

A tensor (i.e., n-dimensional array)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Graph-Level Optimizations

6

conv3x3 conv1x1

Input

conv3x3

add

relu

…

Potential graph
transformations

conv3x3 conv1x1

Input

conv3x3

add

relu

batchnorm batchnorm

Input Computation
Graph

Optimized Computation
Graph

Fuse conv + batchnorm

conv

batchnorm

conv

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Example: Fusing Conv and Batch Normalization

7

Conv2D

X W

BatchNorm

Y

Z

R P

𝒁 𝒏, 𝒄, 𝒉,𝒘 = 𝒀 𝒏, 𝒄, 𝒉,𝒘 ∗ 𝑹 𝒄 + 𝑷 𝒄

𝒀 𝒏, 𝒄, 𝒉,𝒘 = -
𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾(𝒄, 𝒅, 𝒖, 𝒗) + 𝑩(𝒏, 𝒄, 𝒉,𝒘)

B

W, B, R, P are constant pre-trained weights

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Fusing Conv and BatchNorm

8

Conv2D

X W

BatchNorm

Y

Z

R P

B

Conv2D

X W2

Z

B2

𝑾𝟐 𝒏, 𝒄, 𝒉,𝒘 = 𝑾 𝒏, 𝒄, 𝒉,𝒘 ∗ 𝑹 𝒄

𝑩𝟐 𝒏, 𝒄, 𝒉,𝒘 = 𝑩 𝒏, 𝒄, 𝒉,𝒘 ∗ 𝑹 𝒄 + 𝑷(𝒄)

𝒁 𝒏, 𝒄, 𝒉,𝒘 = -
𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾𝟐 (𝒄, 𝒅, 𝒖, 𝒗) + 𝑩𝟐 (𝒏, 𝒄, 𝒉,𝒘)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

9

Fuse conv + relu

Fuse conv +
batch normalization

Fuse multi. convs

…

Current Rule-based Graph Optimizations

Rule-based Optimizer

TensorFlow currently
includes ~200 rules

(~53,000 LOC)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Limitations of Rule-based Optimizations

When I turned on XLA (TensorFlow’s graph optimizer),
the training speed is about 20% slower

With XLA, my program is almost 2x slower than
without XLA

Robustness
Experts’ heuristics do not

apply to all models/hardware

10

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Limitations of Rule-based Optimizations

Robustness
Experts’ heuristics do not

apply to all models/hardware

Scalability
New operators and graph

structures require more rules

TensorFlow currently uses ~4K
LOC to optimize convolution

11

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Limitations of Rule-based Optimizations

Robustness
Experts’ heuristics do not

apply to all models/hardware

Scalability
New operators and graph

structures require more rules

Performance
Miss subtle optimizations for

specific models/hardware

12

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Motivating Example (ResNet*)

Conv3x3
+ Relu

Conv1x1
+ Relu

Input

Conv3x3

Add

Relu

13

𝒀 𝒏, 𝒄, 𝒉,𝒘 =-
𝒅

𝑫

-
𝒖'𝟏

𝟏

-
𝒗'𝟏

𝟏

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾(𝒄, 𝒅, 𝒖, 𝒗)

𝒀 𝒏, 𝒄, 𝒉,𝒘 =-
𝒅

𝑫

-
𝒖'𝟏

𝟑

-
𝒗'𝟏

𝟑

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾(𝒄, 𝒅, 𝒖, 𝒗)

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)

Motivating Example (ResNet*)

Conv3x3
+ Relu

Conv1x1
+ Relu

Input

Conv3x3

Add

Relu

Conv3x3
+ Relu

Conv3x3
+ Relu

Input

Conv3x3

Add

Relu

Enlarge
convs

14

𝒀 𝒏, 𝒄, 𝒉,𝒘 =-
𝒅

-
𝒖'𝟏

𝟑

-
𝒗'𝟏

𝟑

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾(𝒄, 𝒅, 𝒖, 𝒗)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)

Conv3x3
+ Relu

Conv1x1
+ Relu

Input

Conv3x3

Add

Relu

Conv3x3
+ Relu

Conv3x3
+ Relu

Input

Conv3x3

Add

Relu

Enlarge
convs

Conv3x3
+ Relu

Input

Conv3x3

Add

Relu

Split

Fuse
convs

15

𝒀 𝒏, 𝒄, 𝒉,𝒘 =-
𝒅

𝑫

-
𝒖'𝟏

𝟑

-
𝒗'𝟏

𝟑

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾′(𝒄, 𝒅, 𝒖, 𝒗)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)

Motivating Example (ResNet*)

Conv3x3
+ Relu

Conv1x1
+ Relu

Input

Conv3x3

Add

Relu

Conv3x3
+ Relu

Conv3x3
+ Relu

Input

Conv3x3

Add

Relu

Enlarge
convs

Conv3x3
+ Relu

Input

Conv3x3

Add

Relu

Split

Fuse
convs

Fuse
conv & add

The final graph is 30% faster on V100 GPU but 10% slower on K80 GPU.

Conv3x3
+ Relu

Input

Conv3x3
+ Relu

Fuse
conv & relu

Conv3x3
+ Relu

Input

Conv3x3

Relu

16

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

17

Graph Optimizations

ML
Operators

Graph
Architectures

Hardware
Backends

Infeasible to manually design graph optimizations
for all cases

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Automated Generation and Verification of Graph
Optimizations
• Week 5: Graph-Level Optimizations
• Week 5: RL for Device Placement and Graph Optimizations

18

Mathematical
Properties of ML

Graph
Optimization

Generator

Graph
Optimization

Verifier

Candidate
Optimizations

Verified
Optimizations

Graph
Optimizer… …

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

An Overview of Deep Learning Systems

19

ML Model

N
etw

ork

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

Automatic Differentiation

Graph-Level Optimization

Parallelization / Distributed Training

Data Layout and Placement

Kernel Optimizations

Memory Optimizations

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages
1. Forward propagation: apply model to a batch of input samples and run

calculation through operators to produce a prediction
2. Backward propagation: run the model in reverse to produce error for

each trainable weight
3. Weight update: use the loss value to update model weights

20

Forward propagation

Model inputs Model prediction

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages
1. Forward propagation: apply model to a batch of input samples and run

calculation through operators to produce a prediction
2. Backward propagation: run the model in reverse to produce error for

each trainable weight
3. Weight update: use the loss value to update model weights

21

Backward propagation

Model inputs Model prediction

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages
1. Forward propagation: apply model to a batch of input samples and run

calculation through operators to produce a prediction
2. Backward propagation: run the model in reverse to produce error for

each trainable weight
3. Weight update: use the loss value to update model weights

22

𝑤7 ≔ 𝑤7 − 𝛾∇𝐿 𝑤7 = 𝑤7 −
𝛾
𝑛
)
89:

;

∇𝐿8(𝑤7)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

How can we parallelize ML training?

24

𝑤7 ≔ 𝑤7 − 𝛾∇𝐿 𝑤7 = 𝑤7 −
𝛾
𝑛
)
89:

;

∇𝐿8(𝑤7)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Data Parallelism

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…

25

𝑤* ≔ 𝑤* − 𝛾∇𝐿 𝑤* = 𝑤* −
𝛾
𝑛-
+',

-

∇𝐿+(𝑤*)

1. Partition training data into batches 2. Compute the gradients of
each batch on a GPU

Gradients
Aggregation

3. Aggregate gradients
across GPUs

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Data Parallelism: Parameter Server

26

Workers push gradients to
parameter servers and pull
updated parameters back

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Inefficiency of Parameter Server

• Centralized communication: all workers communicate with parameter
servers for weights update; cannot scale to large numbers of workers

• How can we decentralize communication in DNN training?

27

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Inefficiency of Parameter Server

• Centralized communication: all workers communicate with parameter
servers for weights update; cannot scale to large numbers of workers

• How can we decentralize communication in DNN training?

• AllReduce: perform element-wise reduction across multiple devices

28

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Different Ways to Perform AllReduce

• Naïve AllReduce
• Ring AllReduce
• Tree AllReduce
• Butterfly AllReduce

29

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Naïve AllReduce

30

• Each worker can send its local gradients to all other workers
• If we have N workers and each worker contains M parameters
• Overall communication: N * (N-1) * M parameters
• Issue: each worker communicates with all other workers; have the same

scalability issue as parameter server

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices
• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the

next worker on the ring; repeat N times

31

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices
• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the

next worker on the ring; repeat N times

32

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices
• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the

next worker on the ring; repeat N times

33

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

34

Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices
• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the

next worker on the ring; repeat N times
• After step 1, each worker has the aggregated version of M/N parameters

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Ring AllReduce

35

• Construct a ring of N workers, divide M parameters into N slices
• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the

next worker on the ring; repeat N times
• Step 2 (Broadcast): each worker send one slice of aggregated parameters

to the next worker; repeat N times

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

36

Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices
• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the

next worker on the ring; repeat N times
• Step 2 (Broadcast): each worker send one slice of aggregated parameters

to the next worker; repeat N times

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

37

Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices
• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the

next worker on the ring; repeat N times
• Step 2 (Broadcast): each worker send one slice of aggregated parameters

to the next worker; repeat N times
• Overall communication: 2 * M * N parameters

• Aggregation: M * N parameters
• Broadcast: M * N parameters

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Tree AllReduce

• Construct a tree of N workers;
• Step 1 (Aggregation): each worker sends M parameters to its parent;

repeat log(N) times
• Step 2 (Broadcast): each worker sends M parameters to its children;

repeat log(N) times

38
Worker 0 Worker 1 Worker 2 Worker 3

Worker 4 Worker 5

Worker 6

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Tree AllReduce

• Construct a tree of N workers;
• Step 1 (Aggregation): each worker sends M parameters to its parent;

repeat log(N) times
• Step 2 (Broadcast): each worker sends M parameters to its children;

repeat log(N) times
• Overall communication: 2 * N * M parameters

• Aggregation: M * N parameters
• Broadcast: M * N parameters

39

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Butterfly Network

40

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Butterfly AllReduce

• Repeat log(N) times:
1. Each worker sends M parameters to

its target node in the butterfly
network

2. Each worker aggregates gradients
locally

• Overall communication: N * M * log(N)
parameters

41

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Comparing different AllReduce Methods

42

Parameter
Server

Naïve
AllReduce

Ring
AllReduce

Tree
AllReduce

Butterfly
AllReduce

Overall
communicatio
n

2×𝑁×𝑀 𝑁!×𝑀 2×𝑁×𝑀 2×𝑁×𝑀 𝑁×𝑀
× log𝑁

Question: Ring AllReduce is more efficient and scalable then
Tree AllReduce and Parameter Server, why?

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Ring AllReduce v.s. Tree AllReduce v.s. Parameter
Server

43

Each worker sends M/N parameters per
iteration; repeat for 2*N iterations
Latency: M/N * (2*N) / bandwidth

Each worker sends M parameters per
iteration; repeat for 2*log(N) iterations
Latency: M * 2 * log(N) / bandwidth

All workers send M parameters to
parameter servers and receive M
parameters from servers
Latency: M * N / bandwidth

Ring AllReduce:
• Best latency
• Balanced workload across workers
• More scalable since each worker

sends 2*M parameters (independent to
the number of workers)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Data Parallelism

Each worker keeps a replica of the entire model and communicates with
other workers to synchronize weights updates

Gradients aggregation methods:
• Parameter Server
• Ring AllReduce
• Tree AllReduce
• Butterfly AllReduce
• Etc.

44

GPU 1

GPU 2

GPU N

…
Gradients

Aggregation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU 1

Model Parallelism

• Split a model into multiple subgraphs and assign them to different devices

45

GPU 2

ML Model

Training Dataset

Model
Parallelism

𝑤* ≔ 𝑤* − 𝛾∇𝐿 𝑤* = 𝑤* −
𝛾
𝑛-
+',

-

∇𝐿+(𝑤*)

Transfer
intermediate
results
between
devices

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Model Parallelism

46Device placement optimization with reinforcement learning. A Mirhoseini et al.

Model parallelism: training a RNN on 4 GPUs

Model parallelism: training Inception-v3 on 4 GPUs

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Pipeline Parallelism

• Divide a mini-batch into multiple micro-batches
• Pipeline the forward/backward computations across micro-batches
• Generally combined with model parallelism

47Figure from GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding

Model Parallelism

Model + Pipeline
Parallelism

Computation
Graph minibatch

4 microbatches

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Comparing Data/Model/Pipeline Parallelism

48

Data Parallelism Model Parallelism Pipeline Parallelism

ü Massively parallelizable
ü Require no communication during

forward/backward

ü Support training large models
ü Efficient for models with large

numbers of parameters

ü Support large-batch training

v Do not work for models that cannot
fit on a GPU

v Do not scale for models with large
numbers of parameters

v Limited parallelizability; cannot
scale to large numbers of GPUs

v Need to transfer intermediate
results in forward/backward

v Limited utilization: bubbles in
forward/backward

Pros

Cons

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…

!! ≔ !! − $∇& !! = !! −
$
()∇&"(!!)

#

"$%

Gradients
Aggregation

GPU 1

GPU 2

ML Model

Training Dataset

Model
Parallelism

!! ≔ !! − $∇& !! = !! −
$
()∇&"(!!)

#

"$%

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Comparing Data/Model/Pipeline Parallelism

49

Data Parallelism Model Parallelism Pipeline Parallelism

ü Massively parallelizable
ü Require no communication during

forward/backward

ü Support training large models
ü Efficient for models with large

numbers of parameters

ü Support large-batch training

v Do not work for models that cannot
fit on a GPU

v Do not scale for models with large
numbers of parameters

v Limited parallelizability; cannot
scale to large numbers of GPUs

v Need to transfer intermediate
results in forward/backward

v Limited utilization: bubbles in
forward/backward

Pros

Cons

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…

!! ≔ !! − $∇& !! = !! −
$
()∇&"(!!)

#

"$%

Gradients
Aggregation

GPU 1

GPU 2

ML Model

Training Dataset

Model
Parallelism

!! ≔ !! − $∇& !! = !! −
$
()∇&"(!!)

#

"$%

Training large models requires combining data/model/pipeline
and other parallelization techniques

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

An Overview of Deep Learning Systems

50

ML Model

N
etw

ork

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

Automatic Differentiation

Graph-Level Optimization

Parallelization / Distributed Training

Code Optimization

Memory Optimization

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Code Optimization: How to find performant programs for
each operator?

51* Slides from Tianqi Chen

conv3x3 Matmul

Input

conv3x3

add

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Existing Approach: Engineer Optimized Tensor Programs

• Hardware vendors provide operator libraries manually developed by
software/hardware engineers

• cuDNN, cuBLAS, cuRAND, cuSPARSE for GPUs
• cudnnConvolutionForward() for convolution
• cublasSgemm() for matrix multiplication

Issues:
• Cannot provide immediate support for new operators
• Increasing complexity of hardware -> hand-written kernels are suboptimal

52

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Automated Code Generation

53

conv3x3 Matmul

Input

conv3x3

add

Automated search for performant
programs:
ü Immediate support for new operators
ü Better performance than hand-written

kernels

* Slides from Tianqi Chen

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

An Overview of Deep Learning Systems

54

ML Model

N
etw

ork

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

Automatic Differentiation

Graph-Level Optimization

Parallelization / Distributed Training

Code Optimization

Memory Optimization

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: GPU Memory is the Bottleneck in DNN Training

• The biggest model we can train is bounded by GPU memory

• Larger models often achieve better predictive performance

• Extremely critical for modern accelerators with limited on-chip memory

55

Forward pass

Backward pass

Need to keep all intermediate results alive

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Memory Efficient Training: Tensor Rematerialization

56

Forward pass
Backward pass

Only store colored nodes

Rematerialize missing nodes

Rematerialize missing nodes

Rematerialize missing nodes

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Memory Efficient Training : Tensor Rematerialization

57

Forward pass
Backward pass

Only store colored nodes

Rematerialize missing nodes

Rematerialize missing nodes

If we store a node every K steps on a
N-node model.
Memory cost = O(N/K) + O(K)

Pick K = 𝑁

Rematerialize missing nodes

Checkpointing cost Rematerialization cost

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Memory Efficient Training : Tensor Rematerialization

58

Nodes may have non-linear topology and
non-uniform memory costs

Formalize this as a mixed integer linear
programming (MILP) problem and use an
existing MILP solver.

We will learn this on week 7.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Memory Efficiency: Zero Redundancy

• In distributed training, data/model/pipeline parallelism all involve redundancy

59

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…

!! ≔ !! − $∇& !! = !! −
$
()∇&"(!!)

#

"$%

Gradients
Aggregation

GPU 1

GPU 2

ML Model

Training Dataset

Model
Parallelism

!! ≔ !! − $∇& !! = !! −
$
()∇&"(!!)

#

"$%

Data parallelism replicates
model parameters

Model/pipeline parallelism
replicate intermediate tensors

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Memory Efficient Training : Zero Redundancy

• Key idea: partition replicated parameters, gradients, and optimizer states
across GPUs

• When needed, each GPU broadcast its local parameters/gradients to all
other GPUs

60Figure from ZeRO: Memory Optimizations Toward Training Trillion Parameter Models

Zero redundancy for
data parallelism

This is achieved at
the cost of extra
communications!

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Balancing Computation/Memory/Communication Cost in
DNN Training

61

Computation Cost Memory Cost

Automatic Differentiation

Zero Redundancy

Communication
Cost

Tensor Rematerialization

