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Administrative

• Paper presentation assignments available on the website
• Discuss with your partner on how you would like to deliver the 

presentation

• First reading assignments due next Monday before lecture
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Recap: Deep Learning Systems
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Recap: Automatic Differentiation
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Recap: Deep Neural Network

• Collection of simple trainable mathematical units that work together to 
solve complicated tasks
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A tensor algebra operator 
(e.g., convolution, matrix mul)

A tensor (i.e., n-dimensional array)
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Graph-Level Optimizations
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Example: Fusing Conv and Batch Normalization
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Conv2D

X W

BatchNorm

Y

Z

R P

𝒁 𝒏, 𝒄, 𝒉,𝒘 = 𝒀 𝒏, 𝒄, 𝒉,𝒘 ∗ 𝑹 𝒄 + 𝑷 𝒄

𝒀 𝒏, 𝒄, 𝒉,𝒘 = -
𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾(𝒄, 𝒅, 𝒖, 𝒗) + 𝑩(𝒏, 𝒄, 𝒉,𝒘)

B

W, B, R, P are constant pre-trained weights
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Fusing Conv and BatchNorm
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𝑾𝟐 𝒏, 𝒄, 𝒉,𝒘 = 𝑾 𝒏, 𝒄, 𝒉,𝒘 ∗ 𝑹 𝒄

𝑩𝟐 𝒏, 𝒄, 𝒉,𝒘 = 𝑩 𝒏, 𝒄, 𝒉,𝒘 ∗ 𝑹 𝒄 + 𝑷(𝒄)

𝒁 𝒏, 𝒄, 𝒉,𝒘 = -
𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾𝟐 (𝒄, 𝒅, 𝒖, 𝒗) + 𝑩𝟐 (𝒏, 𝒄, 𝒉,𝒘)
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Fuse conv + relu

Fuse conv + 
batch normalization

Fuse multi. convs

…

Current Rule-based Graph Optimizations

Rule-based Optimizer

TensorFlow currently 
includes ~200 rules 

(~53,000 LOC)
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Limitations of Rule-based Optimizations

When I turned on XLA (TensorFlow’s graph optimizer), 
the training speed is about 20% slower

With XLA, my program is almost 2x slower than
without XLA

Robustness
Experts’ heuristics do not 

apply to all models/hardware  
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Limitations of Rule-based Optimizations

Robustness
Experts’ heuristics do not 

apply to all models/hardware  

Scalability
New operators and graph 

structures require more rules

TensorFlow currently uses ~4K 
LOC to optimize convolution
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Limitations of Rule-based Optimizations

Robustness
Experts’ heuristics do not 

apply to all models/hardware  

Scalability
New operators and graph 

structures require more rules

Performance
Miss subtle optimizations for

specific models/hardware
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Motivating Example (ResNet*)

Conv3x3
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Conv3x3
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Relu
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* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015
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* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)

Motivating Example (ResNet*)
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* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)
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* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)

Motivating Example (ResNet*)
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The final graph is 30% faster on V100 GPU but 10% slower on K80 GPU.
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Graph Optimizations

ML 
Operators

Graph
Architectures

Hardware 
Backends

Infeasible to manually design graph optimizations 
for all cases 
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Automated Generation and Verification of Graph 
Optimizations
• Week 5: Graph-Level Optimizations
• Week 5: RL for Device Placement and Graph Optimizations

18
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Properties of ML

Graph 
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Generator

Graph 
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Graph 
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An Overview of Deep Learning Systems
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Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages
1. Forward propagation: apply model to a batch of input samples and run 

calculation through operators to produce a prediction
2. Backward propagation: run the model in reverse to produce error for 

each trainable weight
3. Weight update: use the loss value to update model weights 

20

Forward propagation

Model inputs Model prediction
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Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages
1. Forward propagation: apply model to a batch of input samples and run 

calculation through operators to produce a prediction
2. Backward propagation: run the model in reverse to produce error for 

each trainable weight
3. Weight update: use the loss value to update model weights 

21

Backward propagation

Model inputs Model prediction
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Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages
1. Forward propagation: apply model to a batch of input samples and run 

calculation through operators to produce a prediction
2. Backward propagation: run the model in reverse to produce error for 

each trainable weight
3. Weight update: use the loss value to update model weights 
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How can we parallelize ML training?
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Data Parallelism

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…
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1. Partition training data into batches 2. Compute the gradients of 
each batch on a GPU 

Gradients 
Aggregation

3. Aggregate gradients 
across GPUs
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Data Parallelism: Parameter Server

26

Workers push gradients to 
parameter servers and pull 
updated parameters back
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Inefficiency of Parameter Server

• Centralized communication: all workers communicate with parameter 
servers for weights update; cannot scale to large numbers of workers

• How can we decentralize communication in DNN training?

27
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Inefficiency of Parameter Server

• Centralized communication: all workers communicate with parameter 
servers for weights update; cannot scale to large numbers of workers

• How can we decentralize communication in DNN training?

• AllReduce: perform element-wise reduction across multiple devices

28
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Different Ways to Perform AllReduce

• Naïve AllReduce
• Ring AllReduce
• Tree AllReduce
• Butterfly AllReduce

29
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Naïve AllReduce

30

• Each worker can send its local gradients to all other workers
• If we have N workers and each worker contains M parameters
• Overall communication: N * (N-1) * M parameters
• Issue: each worker communicates with all other workers; have the same 

scalability issue as parameter server 
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Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices
• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the 

next worker on the ring; repeat N times

31
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Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices
• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the 

next worker on the ring; repeat N times

32
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Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices
• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the 

next worker on the ring; repeat N times

33
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Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices
• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the 

next worker on the ring; repeat N times
• After step 1, each worker has the aggregated version of M/N parameters
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Ring AllReduce

35

• Construct a ring of N workers, divide M parameters into N slices
• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the 

next worker on the ring; repeat N times
• Step 2 (Broadcast): each worker send one slice of aggregated parameters 

to the next worker; repeat N times
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36

Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices
• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the 

next worker on the ring; repeat N times
• Step 2 (Broadcast): each worker send one slice of aggregated parameters 

to the next worker; repeat N times
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Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices
• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the 

next worker on the ring; repeat N times
• Step 2 (Broadcast): each worker send one slice of aggregated parameters 

to the next worker; repeat N times
• Overall communication: 2 * M * N parameters

• Aggregation: M * N parameters
• Broadcast: M * N parameters



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Tree AllReduce

• Construct a tree of N workers;
• Step 1 (Aggregation): each worker sends M parameters to its parent; 

repeat log(N) times
• Step 2 (Broadcast): each worker sends M parameters to its children;

repeat log(N) times  

38
Worker 0 Worker 1 Worker 2 Worker 3

Worker 4 Worker 5

Worker 6
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Tree AllReduce

• Construct a tree of N workers;
• Step 1 (Aggregation): each worker sends M parameters to its parent; 

repeat log(N) times
• Step 2 (Broadcast): each worker sends M parameters to its children; 

repeat log(N) times  
• Overall communication: 2 * N * M parameters

• Aggregation: M * N parameters
• Broadcast: M * N parameters

39
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Butterfly Network

40
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Butterfly AllReduce

• Repeat log(N) times:
1. Each worker sends M parameters to 

its target node in the butterfly 
network

2. Each worker aggregates gradients 
locally

• Overall communication: N * M * log(N) 
parameters

41
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Comparing different AllReduce Methods

42

Parameter 
Server

Naïve 
AllReduce

Ring 
AllReduce

Tree 
AllReduce

Butterfly 
AllReduce

Overall 
communicatio
n

2×𝑁×𝑀 𝑁!×𝑀 2×𝑁×𝑀 2×𝑁×𝑀 𝑁×𝑀
× log𝑁

Question: Ring AllReduce is more efficient and scalable then 
Tree AllReduce and Parameter Server, why?
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Ring AllReduce v.s. Tree AllReduce v.s. Parameter 
Server

43

Each worker sends M/N parameters per
iteration; repeat for 2*N iterations
Latency: M/N * (2*N) / bandwidth

Each worker sends M parameters per
iteration; repeat for 2*log(N) iterations
Latency: M * 2 * log(N) / bandwidth

All workers send M parameters to 
parameter servers and receive M 
parameters from servers
Latency: M * N / bandwidth

Ring AllReduce:
• Best latency
• Balanced workload across workers
• More scalable since each worker 

sends 2*M parameters (independent to 
the number of workers)
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Recap: Data Parallelism

Each worker keeps a replica of the entire model and communicates with 
other workers to synchronize weights updates

Gradients aggregation methods:
• Parameter Server
• Ring AllReduce
• Tree AllReduce
• Butterfly AllReduce
• Etc.

44

GPU 1

GPU 2

GPU N

…
Gradients 

Aggregation
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GPU 1

Model Parallelism

• Split a model into multiple subgraphs and assign them to different devices

45

GPU 2

ML Model

Training Dataset

Model 
Parallelism
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Transfer 
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results
between
devices
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Model Parallelism

46Device placement optimization with reinforcement learning. A Mirhoseini et al.

Model parallelism: training a RNN on 4 GPUs 

Model parallelism: training Inception-v3 on 4 GPUs 



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Pipeline Parallelism

• Divide a mini-batch into multiple micro-batches
• Pipeline the forward/backward computations across micro-batches
• Generally combined with model parallelism

47Figure from GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding

Model Parallelism

Model + Pipeline
Parallelism

Computation 
Graph minibatch

4 microbatches
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Comparing Data/Model/Pipeline Parallelism

48

Data Parallelism Model Parallelism Pipeline Parallelism

ü Massively parallelizable
ü Require no communication during 

forward/backward

ü Support training large models
ü Efficient for models with large 

numbers of parameters

ü Support large-batch training

v Do not work for models that cannot 
fit on a GPU

v Do not scale for models with large 
numbers of parameters

v Limited parallelizability; cannot 
scale to large numbers of GPUs

v Need to transfer intermediate 
results in forward/backward

v Limited utilization: bubbles in 
forward/backward

Pros

Cons
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Comparing Data/Model/Pipeline Parallelism

49

Data Parallelism Model Parallelism Pipeline Parallelism

ü Massively parallelizable
ü Require no communication during 

forward/backward

ü Support training large models
ü Efficient for models with large 

numbers of parameters

ü Support large-batch training

v Do not work for models that cannot 
fit on a GPU

v Do not scale for models with large 
numbers of parameters

v Limited parallelizability; cannot 
scale to large numbers of GPUs

v Need to transfer intermediate 
results in forward/backward

v Limited utilization: bubbles in 
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Training large models requires combining data/model/pipeline 
and other parallelization techniques
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An Overview of Deep Learning Systems
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Code Optimization: How to find performant programs for 
each operator?

51* Slides from Tianqi Chen

conv3x3 Matmul

Input

conv3x3

add
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Existing Approach: Engineer Optimized Tensor Programs

• Hardware vendors provide operator libraries manually developed by 
software/hardware engineers

• cuDNN, cuBLAS, cuRAND, cuSPARSE for GPUs
• cudnnConvolutionForward() for convolution
• cublasSgemm() for matrix multiplication

Issues:
• Cannot provide immediate support for new operators
• Increasing complexity of hardware -> hand-written kernels are suboptimal

52
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Automated Code Generation

53

conv3x3 Matmul

Input

conv3x3

add

Automated search for performant 
programs:
ü Immediate support for new operators
ü Better performance than hand-written 

kernels

* Slides from Tianqi Chen
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An Overview of Deep Learning Systems

54
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Recap: GPU Memory is the Bottleneck in DNN Training

• The biggest model we can train is bounded by GPU memory

• Larger models often achieve better predictive performance

• Extremely critical for modern accelerators with limited on-chip memory

55

Forward pass

Backward pass

Need to keep all intermediate results alive
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Memory Efficient Training: Tensor Rematerialization

56

Forward pass
Backward pass

Only store colored nodes

Rematerialize missing nodes

Rematerialize missing nodes

Rematerialize missing nodes
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Memory Efficient Training : Tensor Rematerialization

57

Forward pass
Backward pass

Only store colored nodes

Rematerialize missing nodes

Rematerialize missing nodes

If we store a node every K steps on a 
N-node model.
Memory cost = O(N/K) + O(K)

Pick K = 𝑁

Rematerialize missing nodes

Checkpointing cost Rematerialization cost
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Memory Efficient Training : Tensor Rematerialization

58

Nodes may have non-linear topology and 
non-uniform memory costs

Formalize this as a mixed integer linear 
programming (MILP) problem and use an 
existing MILP solver.

We will learn this on week 7.
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Memory Efficiency: Zero Redundancy

• In distributed training, data/model/pipeline parallelism all involve redundancy

59
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Data parallelism replicates 
model parameters

Model/pipeline parallelism 
replicate intermediate tensors
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Memory Efficient Training : Zero Redundancy

• Key idea: partition replicated parameters, gradients, and optimizer states 
across GPUs

• When needed, each GPU broadcast its local parameters/gradients to all 
other GPUs

60Figure from ZeRO: Memory Optimizations Toward Training Trillion Parameter Models

Zero redundancy for 
data parallelism

This is achieved at 
the cost of extra 
communications!
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Balancing Computation/Memory/Communication Cost in 
DNN Training

61

Computation Cost Memory Cost

Automatic Differentiation

Zero Redundancy

Communication 
Cost

Tensor Rematerialization


