
Presenter: Zhihao Zhang, Date: 02/02/2022

Scaling Distributed Machine Learning
with Parameter Server
Authors: Mu li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski, James
Long, Eugene J. Shekita, and Bor-Yiing Su

Motivations
large models

large datasets

Distributed system

Challenges

• Accessing huge amount of parameters (push/pull/update gradients and
weights)

• Sequential nature of DL training algorithms VS efficiency

• Fault tolerance and flexibility when scaling up

Preliminaries

Methodology
Accessing huge amount of parameters (push/pull/update gradients and weights)

• Message between server
nodes :{timestamp, key-
value pair}

• Suppose we have n workers
with m parameters on each

• Spatial complexity O(nm) for
both timestamp and key-
value pair

Problem

• Usually update in a block
fashion (layer by layer)

• Static computational graph

• Potentially sparse

ML features

• Uses ranges instead of per-
weight wise timestamp:
O(nm) -> O(nk)

• Key compression: Cache key
locally for the first message
and hash key list afterwards

• Potentially sparse: Remove
key-value pairs for value=0

Solutions

Methodology
Sequential nature of DL training algorithms VS efficiency

• DL model training is usually
sequentialized: SGD, BGD

• Synchronization needs to
wait for the slowest worker to
finish

• Asynchronies update might
lead to slow convergence
rate

Problem

• Sequential

• Eventual

• Bounded delay

Distributed system features

• Uses hyper-parameter in
bounded delay to balance
between convergence rate
and efficiency for different
tasks

τ

Solutions

Methodology
Fault tolerance and flexibility when scaling up

• Fault tolerance when
machine failure happens

• Add or remove nodes

• Avoid full restart

Problem

• Duplicate server nodes

• Consistent Hashing

• Only after aggregation
information matters for DL
update

Distributed system and DL features

• Uses Consistent Hashing for
managing key-value pairs on
different server nodes (could
dynamically add or remove
nodes more efficiently)

• Replicate after aggregation
instead of chain replication

Solutions

Methodology
Replicate after aggregation

worker 0 server 0 server 0’

Ack Ack

x0 f(x0)
f(x0)

Chain replication

worker 1 server 0 server 0’

Ack Ack

x1 f(x1)
f(x1)

worker 2 server 0 server 0’

Ack Ack

x2 f(x2)
f(x2)

worker i server 0 server 0’

Ack Ack

xi f(xi)
f(xi)

…

Replicate

worker 0 server 0 server 0’

Ack Ack

x0 f(x0)
f(x0)

Replication after aggregation

worker 1 server 0 server 0’

Ack Ack

x1 f(x0, x1, x2)

worker 0 Ack

x0

worker 2

Ack

x2

f(x0, x1, x2)

Replicate

Reduce a factor of worker numbers

Methodology
System flexibility

• User defined functions on server side (eg. calculating regularization terms)

• User defined message filtering (KTT, gradient thresholding)

Summary

• Range timestamps

• Cache and hash Keys

• Sparse weight matrix
cleaning

Paratemeter messaging

• Uses a hyper-parameter in
bounded delay to balance
them off

Asynchronisation vs Synchronisation

• Consistent Hashing

• Replicate after aggregation

Fault tolerance and flexibility

Discussion

Questions

• Why calculating gradients for regularization terms can be handed over to
server side?

• In which cases do asynchronisation might introduce duplicate efforts and
inconsistencies?

XGBoost: A Scalable Tree
Boosting System
Tianqi Chen, Carlos Guestrin

Presented by: Giulio Zhou

Overview of XGBoost

Problem: How do we efficiently train gradient boosted decision trees (GBDTs) on
large tabular datasets?

Challenges:
● Existing implementations (pre-2015) were mostly single-core and in-memory, and

could scale poorly to datasets with large numbers of features or instances.
● Data in tabular settings may be highly sparse or missing.
● Sorting and quantile sketch operations are not an obvious fit for accelerators focused

on linear algebra operations.

Proposed Solution: XGBoost is a system for training GBDTs that supports
parallel and approximate tree learning, as well as cache-aware and out-of-core
computation.

Background: Data and Models in Machine Learning

Tabular Data

Image Data

Language Data

Graph DataCNN, MLP

RNN, Transformer

GNN

GBDT

Background: Decision Trees

Source: XGBoost Paper

Background: Decision Trees and Boosting

Objective is convex loss over sum of tree function
outputs + regularization.

Idea behind boosting: Optimize for the objective
in the space of functions, i.e. by learning tree
functions and their associated leaf weights.

Learning all K trees of an ensemble jointly is
intractable → learn trees sequentially to greedily
optimize the objective function.

Stopping criteria may be manually specified (e.g.
number of levels) or based on loss convergence.

XGBoost

● Core algorithm: (sequentially) learn an ensemble of gradient-boosted
decision trees that greedily minimizes convex loss function at each timestep.

● Notable modeling features: second-order optimization, column
subsampling, weight shrinkage, fast tree splitting methods (below).
○ Weighted Quantile Sketches: Even splits via fast 1D gradient-weighted sorting.
○ Sparsity-Aware Split Finding: Fill NULLs with automatically learned default values.

● System-level optimizations: column block for parallel learning, cache-aware
access, blocking for out-of-core computation.

With these contributions, XGBoost helps make gradient-boosted decision trees
more practical in the modern context of large datasets and parallel computation.

Exact Greedy and Approximate Splitting Methods

Exact Greedy Method Approximate Method

For each feature:

1 2 3 4 5 6 7 8Idx

Data 2 0 0 2 2 1 1 2

2 3 6 7 1 4 5 8Sorted Idx

Sorted Data 0 0 1 1 2 2 2 2

1 2 3 4 5 6 7 8Idx

Data 2 0 0 2 2 1 1 2

Find Split Point

Then, choose the point that reduces the loss by the largest amount.

Bins 0 1 2

Find Split Point(Binning either once at
 the start or once per leaf.)

Algorithms for Optimized Splitting (for tree learning)

Weighted Quantile Sketches for Split Sorting
(Approximate)

Sparsity-Aware Split Finding
(Exact Greedy)

1 2 3 4 5 6 7 8Idx

Data 2 0 0 2 2 1 1 2

1 2 3 4 5 6 7 8Idx

Data 2 ? 0 ? 2 ? 1 2

3 7 1 5 8Sorted Idx

Sorted Data 0 1 2 2 2

Find Split Point

Weights 1 2 2 1 1 1 1 1

Bins 0 0.2 0.4 0.6 0.8

Find Split Point

2 4 6

 2 2 2

Fill in Data

System-level Optimizations

Column block for parallel learning — Columns are first sorted locally and the
resulting sorted indices (per-column) are organized in blocks. Allows distribution of
blocks to other machines to perform the sorting operations in parallel.

Cache-aware access — For exact greedy, rows can be pre-fetched to avoid
non-contiguous memory accesses. For approximate, choose a cache block size to
balance parallelization v.s. cache misses.

Blocking for out-of-core computation — Data divided into blocks stored on
using block compression by column to reduce space and block sharding to
increase disk throughput.

XGBoost addresses most of the stated challenges

Challenges:
❖ Existing implementations (pre-2015) were mostly single-core and in-memory.

➢ Enables parallel, cache-aware, and out-of-core computation.
❖ Data in tabular settings may be highly sparse or missing.

➢ Handles this issue for the exact match approach, but not the approximate setting.
➢ (In fact, because categorical variables are one-hot encoded, XGBoost may

increase the sparsity of the data.) [for the version of XGBoost in the paper]
❖ Sorting and quantile sketch operations are not an obvious fit for accelerators

focused on linear algebra operations.
➢ Optimizes access locality and data movement/placement.
➢ Proposes algorithmic improvements such as weighted quantile sketch.

Discussion

1. XGBoost handles categorical features by one-hot encoding them. How might
this affect the properties or quality of the learned trees?

2. XGBoost can handle sparseness efficiently when using exact greedy learning.
Why is the histogram-based learning approach potentially inefficient for
sparse data?

