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Motivations
large models

large datasets

Distributed system



Challenges

• Accessing huge amount of parameters (push/pull/update gradients and 
weights)


• Sequential nature of DL training algorithms VS efficiency


• Fault tolerance and flexibility when scaling up



Preliminaries



Methodology 
Accessing huge amount of parameters (push/pull/update gradients and weights)

• Message between server 
nodes  :{timestamp, key-
value pair} 

• Suppose we have n workers 
with m parameters on each 

• Spatial complexity O(nm) for 
both timestamp and key-
value pair

Problem

• Usually update in a block 
fashion (layer by layer) 

• Static computational graph 

• Potentially sparse 

ML features

• Uses ranges instead of per-
weight wise timestamp: 
O(nm) -> O(nk) 

• Key compression: Cache key 
locally for the first message 
and hash key list afterwards 

• Potentially sparse: Remove 
key-value pairs for value=0

Solutions



Methodology 
Sequential nature of DL training algorithms VS efficiency

• DL model training is usually 
sequentialized: SGD, BGD 

• Synchronization needs to 
wait for the slowest worker to 
finish 

• Asynchronies update might 
lead to slow convergence 
rate 

Problem

• Sequential 

• Eventual 

• Bounded delay

Distributed system features

• Uses hyper-parameter  in 
bounded delay to balance 
between convergence rate 
and efficiency for different 
tasks

τ

Solutions



Methodology 
Fault tolerance and flexibility when scaling up

• Fault tolerance when 
machine failure happens 

• Add or remove nodes 

• Avoid full restart 

Problem

• Duplicate server nodes 

• Consistent Hashing 

• Only after aggregation 
information matters for DL 
update

Distributed system and DL features

• Uses Consistent Hashing for 
managing key-value pairs on 
different server nodes (could 
dynamically add or remove 
nodes more efficiently) 

• Replicate after aggregation 
instead of chain replication 

Solutions



Methodology 
Replicate after aggregation

worker 0 server 0 server 0’

Ack Ack

x0 f(x0)
f(x0)

Chain replication

worker 1 server 0 server 0’

Ack Ack

x1 f(x1)
f(x1)

worker 2 server 0 server 0’

Ack Ack

x2 f(x2)
f(x2)

worker i server 0 server 0’

Ack Ack

xi f(xi)
f(xi)

…

Replicate

worker 0 server 0 server 0’

Ack Ack

x0 f(x0)
f(x0)

Replication after aggregation

worker 1 server 0 server 0’

Ack Ack

x1 f(x0, x1, x2)

worker 0 Ack

x0

worker 2

Ack

x2

f(x0, x1, x2)

Replicate

Reduce a factor of worker numbers



Methodology 
System flexibility

• User defined functions on server side (eg. calculating regularization terms)


• User defined message filtering (KTT, gradient thresholding)



Summary 

• Range timestamps 

• Cache and hash Keys 

• Sparse weight matrix 
cleaning 

Paratemeter messaging

• Uses a hyper-parameter in 
bounded delay to balance 
them off  

Asynchronisation vs Synchronisation

• Consistent Hashing 

• Replicate after aggregation 

Fault tolerance and flexibility 



Discussion 



Questions

• Why calculating gradients for regularization terms can be handed over to 
server side?


• In which cases do asynchronisation might introduce duplicate efforts and 
inconsistencies?
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Overview of XGBoost

Problem: How do we efficiently train gradient boosted decision trees (GBDTs) on 
large tabular datasets?

Challenges:
● Existing implementations (pre-2015) were mostly single-core and in-memory, and 

could scale poorly to datasets with large numbers of features or instances.
● Data in tabular settings may be highly sparse or missing.
● Sorting and quantile sketch operations are not an obvious fit for accelerators focused 

on linear algebra operations.

Proposed Solution: XGBoost is a system for training GBDTs that supports 
parallel and approximate tree learning, as well as cache-aware and out-of-core 
computation.



Background: Data and Models in Machine Learning

Tabular Data

Image Data

Language Data

Graph DataCNN, MLP

RNN, Transformer

GNN

GBDT



Background: Decision Trees

Source: XGBoost Paper



Background: Decision Trees and Boosting

Objective is convex loss over sum of tree function 
outputs + regularization.

Idea behind boosting: Optimize for the objective 
in the space of functions, i.e. by learning tree 
functions and their associated leaf weights.

Learning all K trees of an ensemble jointly is 
intractable → learn trees sequentially to greedily 
optimize the objective function.

Stopping criteria may be manually specified (e.g. 
number of levels) or based on loss convergence.



XGBoost

● Core algorithm: (sequentially) learn an ensemble of gradient-boosted 
decision trees that greedily minimizes convex loss function at each timestep.

● Notable modeling features: second-order optimization, column 
subsampling, weight shrinkage, fast tree splitting methods (below).
○ Weighted Quantile Sketches: Even splits via fast 1D gradient-weighted sorting. 
○ Sparsity-Aware Split Finding: Fill NULLs with automatically learned default values.

● System-level optimizations: column block for parallel learning, cache-aware 
access, blocking for out-of-core computation.

With these contributions, XGBoost helps make gradient-boosted decision trees 
more practical in the modern context of large datasets and parallel computation.



Exact Greedy and Approximate Splitting Methods

Exact Greedy Method Approximate Method

For each feature:

1 2 3 4 5 6 7 8Idx

Data 2 0  0 2 2 1  1 2

2 3 6 7 1 4 5 8Sorted Idx

Sorted Data 0 0  1 1 2 2  2 2

1 2 3 4 5 6 7 8Idx

Data 2 0  0 2 2 1  1 2

Find Split Point

Then, choose the point that reduces the loss by the largest amount.

Bins 0 1 2

Find Split Point(Binning either once at
 the start or once per leaf.)



Algorithms for Optimized Splitting (for tree learning)

Weighted Quantile Sketches for Split Sorting
(Approximate)

Sparsity-Aware Split Finding
(Exact Greedy)

1 2 3 4 5 6 7 8Idx

Data 2 0  0 2 2 1  1 2

1 2 3 4 5 6 7 8Idx

Data 2 ?  0 ? 2 ?  1 2

3 7 1 5 8Sorted Idx

Sorted Data 0 1 2  2 2

Find Split Point

Weights 1 2  2 1 1 1  1 1

Bins 0 0.2 0.4 0.6 0.8

Find Split Point

2 4 6

 2  2 2

Fill in Data



System-level Optimizations

Column block for parallel learning — Columns are first sorted locally and the 
resulting sorted indices (per-column) are organized in blocks. Allows distribution of 
blocks to other machines to perform the sorting operations in parallel.

Cache-aware access — For exact greedy, rows can be pre-fetched to avoid 
non-contiguous memory accesses. For approximate, choose a cache block size to 
balance parallelization v.s. cache misses.

Blocking for out-of-core computation — Data divided into blocks stored on 
using block compression by column to reduce space and block sharding to 
increase disk throughput.



XGBoost addresses most of the stated challenges

Challenges:
❖ Existing implementations (pre-2015) were mostly single-core and in-memory.

➢ Enables parallel, cache-aware, and out-of-core computation.
❖ Data in tabular settings may be highly sparse or missing.

➢ Handles this issue for the exact match approach, but not the approximate setting.
➢ (In fact, because categorical variables are one-hot encoded, XGBoost may 

increase the sparsity of the data.) [for the version of XGBoost in the paper]
❖ Sorting and quantile sketch operations are not an obvious fit for accelerators 

focused on linear algebra operations.
➢ Optimizes access locality and data movement/placement.
➢ Proposes algorithmic improvements such as weighted quantile sketch.


Discussion

1. XGBoost handles categorical features by one-hot encoding them. How might 
this affect the properties or quality of the learned trees?

2. XGBoost can handle sparseness efficiently when using exact greedy learning. 
Why is the histogram-based learning approach potentially inefficient for 
sparse data?


