Halide

Decoupling Algorithms from Schedules for Easy Optimization of Image
Processing Pipelines

Paper presentaion for 15-849
Bohan Hou

Overview

e Image Processing Pipeline Optimization
o Multiple optimization techniques
o Engineering Complexity

e Key idea: decouple algorithm from schedule
o algorithm: what is computed
o schedule: when and where to compute

Problem: Image Processing Pipeline Optimization

Denoise

Demosaic

Color correct

Tone curve

Bilateral Grid

Local Laplacian Filter

_,gﬁ “UD(

(

P . B e o

Snake Image Segmentation

s OO
%% B

Challenge: Engineering Complexity

Example: Local Laplacian Filters

1500 lines of expert-optimized C++
Multi-threaded, SSE SIMD insts
3 months of work

10x faster than reference C code

Used in Adobe PhotoShop
Camara Raw / Lightroom

Note: data from https://halide-lang.org/assets/lectures/Halide CVPR_intro.pdf

https://halide-lang.org/assets/lectures/Halide_CVPR_intro.pdf

Challenge: Engineering Complexity

Example: 3x3 blur

(a) Clean C++ : 9.94 ms per megapixel

void blur (const Image &in, Image &blurred) {
Image tmp(in.width(), in.height());

for (int y = 0; y < in.height(); y++)
for (int =x 0; x < in.width(); x++)
tmp (x, y) (in(x-1, y) + in(x, y) + in(x+l, y))/3;

for (int y = 0; y < in.height(); y++)
for (int x = 0; x < in.width(); x++)
blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

Techniques:

Tiling

Fusing

Vectorization
Multi-threading
Redundant Computation

Lacks readability, portablity, modularity

— (b) Fast C++ (for x86) : 0.90 ms per megapixel —

void fast_blur (const Image &in, Image &blurred) {
-ml28i one_third = _mm_setl_epil6(21846);
#pragma omp parallel for
for (int yTile = 0; yTile < in.height(); yTile += 32) {
-ml28i a, b, ¢, sum, avg;
-ml128i tmpl[(256/8) % (32+2)];
for (int xTile = 0; xTile < in.width(); xTile += 256) {
-ml28i *tmpPtr = tmp;
for (int y = -1; y < 32+1; y++) {
const uintl6_t #*inPtr = & (in(xTile, yTile+y));
for (int x = 0; x < 256; x += 8) {
a _mm loadu_sil28((.ml28ix) (inPtr-1));
b _mm loadu_sil28((.ml28ix) (inPtr+l));
c mm load sil28((.ml28ix) (inPtr));
s _mm_add_epil6(_mm_add _epil6(a, b), c);
avg _mm_mulhi epil6(sum, one_third);
_mm_store_sil28 (tmpPtr++, avg);
inPtr += 8;
+}
tmpPtr = tmp;
for (int y = 0; y < 32; y++)
-ml28i *outPtr = (.ml28i *) (& (blurred(xTile, yTile+y)));
for (int x = 0; x < 256; x += 8)
_mm load_sil28 (tmpPtr+(2x256)/8);
_mm load_sil28 (tmpPtr+256/8);
_mm_load_sil28 (tmpPtr++);
= _mm_add_epil6(_mm add _epil6(a, b), c);
avg = _mm_mulhi epil6(sum, one_third);
mm_store_sil28 (outPtr++, avg);

g nnn
ol

§ nmnn

11x faster on CPU

Method: Decouple Algorithm from Schedule

(c) Halide : 0.90 ms per megapixel

Func halide_blur (Func in) {
Func tmp, blurred;
Var x, y, xi, yi;

// The algorithm

tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+l, y))/3; Algorithm: what is computed
blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;
// The schedule Schedule: when are where it's computed

blurred.tile(x, y, xi, yi, 256, 32)
.vectorize(xi, 8) .parallel(y);
tmp.chunk (x) .vectorize (x, 8);

return blurred;

}

e FEasy for programmers to build pipelines
e FEasy for programmers to specify & explore optimizations
e FEasy for compilers to generate fast code

Algorithm: Pure functional

Declarative specification

Pipeline stages are pure functions from coordinates to values
No explicit bounds

No loops or traversal orders

Only feed forward pipelines

// The algorithm
tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1l, y))/3;
blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

Algorithm of 3x3 blur

Algorithm: Pure functional

Reduction functions

e initial value function: specify the initial value of each output point
e reduction function: specify the update rules of output points
e reduction domain: specify the reduction order

UniformImage in(UInt (8), 2);

Func histogram, cdf, out;

RDom r (0, in.width(), 0, in.height()), ri(0, 255);
Var x, y, i;

histogram(in(r.x, r.y))++;

cdf (i) = 0;

cdf(ri) = cdf(ri-1l) + histogram(ri);
out (x, y) = cdf(in(x, y));

Algorithm of histograms

Schedule

Schedule defines intra-stage order, inter-stage interleaving

For each stage:

1) In which order should we compute its values?

2) When should we compute its inputs?
3) How to map onto parallel excution resources like SIMD units and GPU blocks?

// The schedule

blurred/tile(x, y, xi, yi, 256, 32) (] traversal order
vectorize(xi, 8) .parallel(y)
tmp .[chunk (x)] [vectorize (x, 8]]; producer consumer relation

parallel execution

e

Schedule: intra-stage order, inter-stage interleaving

Inline Chunk Root Reuse
Compute as needed, do not store Compute, use, then discard subregions Precompute entire required region Load from an existing buffer
tmp
tmp blurred tmp blurred tmp blurred
— 2 1 2

v

:. 3 4 1 + 2 blurred

5 — 6 \’ 3
/ N

Split x into 2Xo+xi,

Split y into 2yo+yi,

Serial y, Serial x Serial x, Serial y Serial y, Vectorized x Parallel y, Vectorized x Serial yo, Xo, Vi, Xi
1]2|3]4a|5]6|7]8 1| 9 |17]2533]41]49|57 1 2 1 2 1 2|5 6|9 10[13 14
9 |10]11|12]13|14]15]16 2 |10]18|26]3442]50|58 3 4 1 2 3 4|7 8|11 12|15 16
17]18|19|20]21|22|23|24 3 |11]19]27|35/43|51|59 5 6 1 2 17 18|21 22|25 26|29 30
25(26|27]28|2930{31|32 4 |12|20]28|36|44|52|60 7 8 1 2 19 20|23 24|27 28|31 32
33|34|35|36|37|38]39]40 5 |13]21]29]37]45|5361 9 10 1 2 33 34|37 38|41 42|45 46
41|42|43]44|45)46|47]48 6 |14]22|30]38|46|54|62 11 12 1 2 35 36|39 40[43 44|47 48
49150|51|52|53|54]55|56 7 |15{23]31|39]47|55|63 13 14 1 2 49 50|53 54|57 58|61 62
57|58|59]60|61|62|63]64 8 |16/24]32|40]48|56|64 15 16 1 2 51 52|55 5659 60|63 64

Compiler Implementation

Partial Schedule

Halide Functions

v v
Schedule Generation [« Desugaring
v v
Lowering to imperative representation
v
Bounds inference
v
Architecture-specific LLVM bitcode
v v
JIT-compiled Statically-compiled

function pointer

object file and header

Lowering:

e Generate loop nests
e Allocate storage for function
realizations

Bounds inference:

e Replace function call with
load/store to the storages

Reduced engineering effort
Better Readability
Better Performance

Evaluation

Bl £

00> 00
K % o G !
Camera Raw Pipeline Local Laplacian Filter Bilateral Grid Snake Image Segmentation
Optimized NEON ASM: 463 lines C++, OpenMP+IPP: 262 lines Tuned C++: 122 lines Vectorized MATLAB: 67 lines
Nokia N900: 772 ms Quad-core x86: 335 ms Quad-core x86: 472ms Quad-core x86: 3800 ms
Halide algorithm: 145 lines Halide algorithm: 62 lines Halide algorithm: 34 lines Halide algorithm: 148 lines
schedule: 23 lines schedule: 7 lines schedule: 6 lines schedule: 7 lines
Nokia N900: 741 ms Quad-core x86: 158 ms Quad-core x86: 80 ms Quad-core x86: 55 ms
2.75x shorter 3.7x shorter 3x shorter 2.2x longer
5% faster than tuned assembly 2.1x faster 5.9x faster 70x faster

Porting to new platforms does not change the algorithm code, only the schedule
Quad-core x86: 51 ms CUDA GPU: 48 ms (7x) CUDA GPU: 11 ms (42x) CUDA GPU: 3 ms (1250x)

Hand-written CUDA: 23 ms
/ [Chen et al. 2007]
Portability

Thanks

Discussion Questions

e Can we design a framwork to automatically schedule a given algorithm?

e |Is Halide language Turing complete? Is there any useful operator that can not
be expressed by Halide? How can we improve it then?

TVM: An Automated End-to-End
Optimizing Compiler for Deep
Learning

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
Carlos Guestrin, Arvind Krishnamurthy

Presented by Ashwin Venkatram
7 February 2022

Contents

* Motivation for DL Compilers & Landscape of HW accelerators

* DL Compiler System Architecture
* Front-end IR
e Back-end IR

e TVM Performance
e Discussion Questions

Motivation for DL Compilers &
Current State

Case Study: Real-time Anomaly Detection

Arm NN TFLite Delegate

Accelerating inference on Android and Linux

& armnn

The Arm NN TFLite Delegate can plug
directly into the TFLite Runtime

Application

TensorFlow Lite Runtime

Greater flexibility for Android developers over
NNAPI

Arm specific CPU and GPU optimizations
accessible through Arm NN

Arm NN TFLite Delegate

: Arm NN
T(l)zllf-'-{tje (Inference Engine)
9 ™ . All TFLite models supported:
Compute Library Driver - Key operators accelerated through Arm NN and ACL
. - Unsupported operators processed through TFLite CPU
- CPU (NEON) Mali Ethos NPU et
GPU thos

Suitable for Linux environments
NVIDIA GTC Nov 2021 Conference Presentation

Scalable, Accelerated Hardware-agnostic ML inference with NVIDIA Triton and ARM NN

GTC

Case Study: Real-time Anomaly Detection

Arm NN TFLite Delegate

Accelerating inference on Android and Linux

& armnn

The Arm NN TFLite Delegate can plug
directly into the TFLite Runtime

Application

TensorFlow Lite Runtime

Greater flexibility for Android developers over
NNAPI

Arm NN TFLite Delegate

. Arm specific CPU and GPU optimizations
%':lf’ . All TFLite models supported:
Key operators accelerated through Arm NN and ACL System can Only perform as
i _____ ‘

Unsupported operators processed through TFLite CPU best as vendor provided
NVIDIA GTC Nov 2021 Conference Presentation Latency gatEd by vendor

Ref . .
© optimized kernels and
Scalable, Accelerated Hardware-agnostic ML inference with NVIDIA Triton and ARM NN provided handcrafted kernels

Suitable for Linux environments . .
implementation of operators!

Heterogenous Hardware Targets

Right-sized processing at the right node

« System requirements push for distributed intelligence
» Data gets cleaned (filtered), processed, analyzed and anonymized
* Improving efficiency and securing data at its source — heterogeneous solution

Network
infrastructure

Rich devices

m Distributed intelligence across heterogeneous platforms for energy-efficiency m

Cortex-A powered products

Cortex-M

ARM Developer Conference: Nov 2019 Tech Talk

m

Varied HW targets available within the ARM
ecosystem

What about Intel CPU, NVIDIA GPUs, Xilinx
SoC FPGA + ARM cores, dedicated
accelerators?

 GPU: TensorRT, FPGA: Xilinx Vitis-Al

How would a ML developer deploy to a
different target and benchmark? Tedious to
cross-compile, deploy, measure and
feedback manually. Can this be automated?

Would deployment optimization need to be
re-done for each target independently on
vendor provided library?

Compatibility with Hardware Microarchitecture

Memory Subsystem Architecture

GPU TPU
* Hardware accelerators primarily differ in:
hd Data |ayOUt rmpa‘:crr.fymanaged mixed explicitly managed
* Memory layout Compute Primitive
- mEEm N EmEE mEEm
i B EEEE EEEE
scalar vector tensor
* Optimizations to be done by compiler stack and | _ o
ithin hard | t ludi Figure 1: CPU, GPU and TPU-like accelerators re-
not within hardware accelerator (exc uding quire different on-chip memory architectures and com-

CPU), enabling |eaner Silicon design W|th pute priﬁmitives.. This divergence must be addressed when
software defined optimization generating optimized code.

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

Current State Pain-Points

* ML System Designer’s difficult choices:

* Avoiding graph optimizations that yield new operations not supported in predefined operator
library

e Using unoptimized implementation of new operators used in models
* Deploying models to production is manual

* Requires re-optimization of model operator performance for each desired hardware target
using vendor specific runtime libraries

Solution Motivation:

* Deep Learning compilers take a high-level IR from existing frameworks and generate low-level
optimized code

* Model architecture agnostic and hardware target agnostic to enable running heterogeneous
models on heterogeneous hardware accelerators

DL Compiler System Architecture

TVM: Learning-based Deep Learning Compiler

Optimization

High-Level Differentiable IR
AutoTVM

Tensor Expression IR

LLVM, CUDA, Metal

Edge Cloud

FPGA FPGA ASIC Hardware Fleet

Tianqi Chen — TVM Conference Overview Presentation
https://sampl.cs.washington.edu/tvmconf/slides/Tiangi-Chen-TVM-Stack-Overview.pdf

https://sampl.cs.washington.edu/tvmconf/slides/Tianqi-Chen-TVM-Stack-Overview.pdf

DL Compiler System Architecture

otbLmodas T TensorFlow PYTOHRCH 2 Caffez @xnet 353%%) ONNX -

Target CPU GPU ASIC DsP More and more
platiorms (X86, ARM, RISC-V) (NVIDIA, AMD) (TPU, Inferentia, NNP, ...) e Accelerators

Fig. 2. The overview of commonly adopted design architecture of DL compilers.

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

Frameworks f O @ o @
¥

| Computational Graph |
¥

Section 3 High Level Graph Rewriting
¥

| Optimized Computational Graph |
v

Operator-level Optimization and Code Generation

Section 4 Declarative Hardware-Aware
Tensor Expressions Optimization Primitives
Machine Learning Based
. achine Learning
Section 5 Automated Optimizer

| Optimized Low Level Loop Program |

—— ———

——

N
CUDA/Metal/OpencL |

-
-

LLVM IR

v
| Deployable Module |

[Accelerator Backend |

Figure 2: System overview of TVM. The current stack
supports descriptions from many deep learning frame-
works and exchange formats, such as CoreML and
ONNX, to target major CPU, GPU and specialized ac-
celerators.

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

https://arxiv.org/abs/2002.03794

TVM Key Innovations

1. Tensor Expression Language

2. Automated Program Optimization Framework via GBT and a ML based cost
model

3. Graph Re-writer + Automatic code generation

Note: This paper discusses #2 — #4

End-User Example

TVM API to get a deployable module

import tvm as t

Use keras framework as example, import model
graph, params = t.frontend.from_keras(keras_model)
target = t.target.cuda()

graph, lib, params = t.compiler.build(graph, target, params)

Compiled runtime module contains:
e Graph - the final optimized computational graph
* Lib - generated operators

e Params - module parameters

Deploying model to the target back-end

import tvm.runtime as t

module = runtime.create(graph, lib, t.cuda(0))
module.set_input(**params)
module.run(data=data_array)

output = tvm.nd.empty(out_shape, ctx=t.cuda(0))

module.get_output(0, output)

Note: TVM supports multiple deployment back-ends in
languages such as C++, Java and Python.

DL Compiler System Architecture

otbLmodas T TensorFlow PYTOHRCH 2 Caffez @xnet 353%%) ONNX -

Frameworks f O ¢@ o @

| Computational Graph |
¥

Section 3 High Level Graph Rewriting
¥

| Optimized Computational Graph |
=

Target CPU GPU ASIC DsP More and more
platiorms (X86, ARM, RISC-V) (NVIDIA, AMD) (TPU, Inferentia, NNP, ...) e Accelerators

Fig. 2. The overview of commonly adopted design architecture of DL compilers.

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

Operator-level Optimization and Code Generation

Section 4 Declarative Hardware-Aware
Tensor Expressions Optimization Primitives
Machine Learning Based
. achine Learning
Section 5 Automated Optimizer

| Optimized Low Level Loop Program |

—— ———

——

N
CUDA/Metal/OpencL |

-
-

LLVM IR

v
| Deployable Module |

[Accelerator Backend |

Figure 2: System overview of TVM. The current stack
supports descriptions from many deep learning frame-
works and exchange formats, such as CoreML and
ONNX, to target major CPU, GPU and specialized ac-
celerators.

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

https://arxiv.org/abs/2002.03794

DL Compiler System Architecture

Input format : ¥ :
oot moass T TensorFlow PYTHRCH © Caffez @xnet SBER () ONNX - Frameworks B° O @@ @ m)
¥
| Computational Graph |
' _ Compiler frontend ¥
— Section 3 High Level Graph Rewriting
Transformation Computation graph — L] -
Symbolic representation Optimizations | Optimized Computational Graph |
1. Frelay (TVM) 1. Algebraic simplification —
2. - bridge (nGraph) 2. Operator fusion L. .)
3. 3 ATen (TC) 3. Operation sinking Operator-level Optimization and Code Generation
4. - direct translation 4. CSE ;
5 . 5. DCE) Section 4 Declarative Hardware-Aware
‘é :: ::‘:;m:g:ﬂ':;’::ﬂ Tensor Expressi@i Oftﬁ’lization Primitives
High-level IR ! Graph IR = 8 - A Machine Learning Based
{Device independent) £ £2 Section 5 Automated Optimizer
1. Representation g Methods E‘ — L]
DAG-based 1. Pattern matcher E | Optimized Low Level Loop Program |
Let-binding-based o 2. Graph rewriting o —— =
Tensor computation - T
Lambda / Einstein | AcceleratorBackend || LLvMIR || cUDAMetaiOpencL |
- Debug tools
2 Implementation IR du?llping] ¥
Data representation 1. Text form
Operators supporiod 1. Jextform | Deployable Module |
= S
Figure 2: System overview of TVM. The current stack
Target cPU == AsiC DSP More and more supports descriptions from many deep learning frame-
platforms XB6, ARM, RISC- NVIDIA, AMD)} (TPU, Inferentia, MNP, ... Acceleratol
o 0 viows AMD) : ! ki works and exchange formats, such as CoreML and

ONNX, to target major CPU, GPU and specialized ac-

Fig. 2. The overview of commonly adopted design architecture of DL compilers.
celerators.

The Deep Learning Compiler: A Comprehensive Survey TVM: An Automated End-to-End Optimizing
https://arxiv.org/abs/2002.03794 Compiler for Deep Learning

https://arxiv.org/abs/2002.03794

High-Level IR Optimizations

* Computation graph optimizations
* Operator Fusion (aka kernel fusion)

* Constant-folding (pre-compute graph sections that are
statically determined)

e Static memory planning to hold

intermediate tensors)

(pre-allocation

* Data layout transformations (required to take advantage
of hardware accelerator memory layout and re-sizing of
operation kernel)

v Compiler frontend

Transformation
Symbaolic representation

1 = relay (TVM)

2. 3 bridge (nGraph)
3. = ATen (TC)

4. 3 direct translation
a5

High-level IR { Graph IR
[Device independent)

1. Representation
DAG-based
Let-binding-based
Tensor computation

Lambda [Einstein

2. Implementation
Data representation
Operators supporied

Computation graph

el il al ol

Computation graph
Optimizations

Algebraic simplification

Operator fusion

Operation sinking

CSE

DCE

Static memory planning

Layout transformation

Methods
Pattern matcher
Graph rewriting

[

[P K]

Debug tools
{IR dumping)
Text form
DAG form

Optimized
Computation graph

https://arxiv.org/abs/2002.03794

The Deep Learning Compiler: A Comprehensive Survey

https://arxiv.org/abs/2002.03794

3 Rules for Operator Fusion

Example Application

Fuse Rule
complex-
out-fusable complex-
|:> out-fusable
elemwisex /
injective
injective
; L) [injective
njective 1:1 mapping
injective
Y E> reduction
reduction

¥

conv2d

v

bn

Y

relu

T

l

—

=

fused-conv2d-
bn-relu

l

'

fused-add-
sqrt

https://www.programmerall.com/article/68731401786/

B w/o fusion
2.00 .
s B w/ fusion
-
[}
L 1.50 A
]
$
-2 1.00
(1}
)
& 0.50
0.00 -
conv+bn+relu depthwise- rnn cell Istm cell
128x28x28 conv-+bn+relu hidden:128 hidden:128
1x1x128x256 512x14x14
3x3x512

Figure 4: Performance comparison between fused and
non-fused operations. TVM generates both operations.
Tested on NVIDIA Titan X.

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

https://www.programmerall.com/article/68731401786/

3 Rules for Operator Fusion

Fuse Rule
complex-
out-fusable complex-
|:> out-fusable
elemwisex /
injective

injective
¥ |:> injective
injective 1:1 mapping
injective
¥ |:> reduction
reduction

Example Application

¥

conv2d

v

bn

Y

relu

l

‘-““'--.‘
fused-convad-
|:l'> bn-relu
v
|:> —™ fused-add-
sqrt
v
E:> — fused-exp-
sum

https://www.programmerall.com/article/68731401786/

B w/o fusion
£y 2007 B w/ fusion
=
$ 1.50-

)

4

E 1.00 ~

LH

& 0.50 ~
0.00 -

depthwise- rnn cell Istm cell
conv-+bn+relu hidden:128 hidden:128
512x14x14
3x3x512

conv+bn+relu
128x28x28
1x1x128x256

Figure 4: Performance comparison between fused and
non-fused operations. TVM generates both operations.
Tested on NVIDIA Titan X.

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

Operator fusion results in new operations that may not be supported by handcrafted kernels in vendor provided
libraries. TVM proposes a code generation approach and searches the space of suggested operator kernels to pick

the best one.

https://www.programmerall.com/article/68731401786/

DL Compiler System Architecture

otbLmodas T TensorFlow PYTOHRCH 2 Caffez @xnet 353%%) ONNX -

Frameworks f O ¢@ o @

| Computational Graph |
¥

Section 3 High Level Graph Rewriting
¥

| Optimized Computational Graph |
=

Target CPU GPU ASIC DsP More and more
platiorms (X86, ARM, RISC-V) (NVIDIA, AMD) (TPU, Inferentia, NNP, ...) e Accelerators

Fig. 2. The overview of commonly adopted design architecture of DL compilers.

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

Operator-level Optimization and Code Generation

Section 4 Declarative Hardware-Aware
Tensor Expressions Optimization Primitives
Machine Learning Based
. achine Learning
Section 5 Automated Optimizer

| Optimized Low Level Loop Program |

—— ———

——

N
CUDA/Metal/OpencL |

-
-

LLVM IR

v
| Deployable Module |

[Accelerator Backend |

Figure 2: System overview of TVM. The current stack
supports descriptions from many deep learning frame-
works and exchange formats, such as CoreML and
ONNX, to target major CPU, GPU and specialized ac-
celerators.

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

https://arxiv.org/abs/2002.03794

DL Compiler System Architecture

otbLmodas T TensorFlow PYTOHRCH 2 Caffez @xnet 353%%) ONNX -

Frameworks f O @ o @
¥

| Computational Graph |
¥

Section 3 High Level Graph Rewriting
¥

| Optimized Computational Graph |
v

Operator-level Optimization and Code Generation
Declarative Hardware-Aware
Tensor Expressions Optimization Primitives
\‘ A/

. Machine Learning Based
Section 5 Automated Optimizer

Section 4

| Optimized Low Level Loop Program |

— 1 —

Target CPU GPU ASIC DsP More and more
platiorms (X86, ARM, RISC-V) (NVIDIA, AMD) (TPU, Inferentia, NNP, ...) e Accelerators

Fig. 2. The overview of commonly adopted design architecture of DL compilers.

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

L "
[Accelerator Backend |[uwmir || cubAametal/opencL |

v
| Deployable Module |

Figure 2: System overview of TVM. The current stack
supports descriptions from many deep learning frame-
works and exchange formats, such as CoreML and
ONNX, to target major CPU, GPU and specialized ac-
celerators.

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

https://arxiv.org/abs/2002.03794

DL Compiler System Architecture

Input format

otbLmodas T TensorFlow PYTOHRCH 2 Caffez @xnet 353%%) ONNX -

Hardware specific

‘Optimizations
Intrinsic mapping

Memory allocation

Memory latency hidin
Loop oriented opt
Parallelization

Ao
Scheduling
(8.0., polyhedr . Other unigue
Rs ...

oo e

Frameworks “F" O @ e n @
¥

| Computational Graph |
¥

Section 3 High Level Graph Rewriting
¥

| Optimized Computational Graph |
v

Operator-level Optimization and Code Generation
Declarative Hardware-Aware
Tensor Expressions Optimization Primitives
\‘ A/

Machine Learning Based
Automateti Optimizer

Section 4

Section 5

| Optimized Low Level Loop Program |

— 1 —

Target CPU GPU ASIC DsP More and more

platforms (XB6, ARM, RISC-V) (NVIDIA, AMD} (TPU, Inferentia, NNP, ... } Accelerators

Fig. 2. The overview of commonly adopted design architecture of DL compilers.

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

L "
[Accelerator Backend |[uwmir || cubAametal/opencL |

v
| Deployable Module |

Figure 2: System overview of TVM. The current stack
supports descriptions from many deep learning frame-
works and exchange formats, such as CoreML and
ONNX, to target major CPU, GPU and specialized ac-
celerators.

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

https://arxiv.org/abs/2002.03794

Generating Tensor Operations

Tensor Expression Scheduls primitives CPU GPU Accel.
¥ used in various hardware backends Sehedule Schedule Schedule
Select Schedule [Halide] Loop Transformations
Primitives . .
[Halide] Thread Binding
Final Schedule [Halide] Compute Locality
J . [TVM] Special Memory Scope
Code Lowering - ot
[TVM] Tensorization .
v - Only for TPU like
Low level code [TVM] Latency Hiding _

accelerators

Builds on Halide’s design style of decoupling scheduling from computation rules

Generating Tensor Operations

User-defined
expression to schedule
each operation

Requires knowledge of
target hardware and
operator semantics

Tensor Expression

Y
Select Schedule

Primitives

Final Schedule

Y
Code Lowering
¥

Low level code

Schedule primitives

CPU

GPU

Accel.

usad in various hardware backends Schedule Schedule Schedule
[Halide] Loop Transformations

[Halide] Thread Binding

[Halide] Compute Locality
[TVM] Special Memory Scope
[TVM] Tensorization

[TVM] Latency Hiding

—_—

Only for TPU like
accelerators

Builds on Halide’s design style of decoupling scheduling from computation rules

Take matrix multiplication 3= our example. Matmul first multiply the corresponding elements between two matrix, then accumulate across a

certain axis. The following lines describe the computation & = g7 in TVM.

N, M, L = 1824, 512, 54
A = te.placeholdexr{(N, L), name="A")

B = te.placeholdexr((M, L), name="B")

-~
n

te.reduce_axis{(@, L), name="k")

te.compute({N, M}, lambda i, j: te.sum({A[i, kK] = B[j, k], axis=k), name="C")}

. C .)
Te n S O rl Ze s - te.cxeate_schecule(Con —> [0 MAp from tensor expression to low level code
print{tvm.lower(s, [A, B, C], simple_mode=True))
Example

n

Bmain = primEn(A_1: handle, B_1: handle, C_1: handle) -= ()
. attr = {"from_legacy_te_schedule": True, "global_symbol": "main", "tir.nocalias": True}
IVl at r I X buffers = {C: Buffer(C_2: Pointer({float3?), float32, [1024, 512], [11.
A: Buffer(A_2: Pointer(float32), fleoat32, [1024, 641, [13,
B: Buffer(B_2: Pointexr{float32}, fleat32, [512, &4], [11}
IVl u |t buffer map = fA_1: A, B_1: B, C_1: C¥ {
for (i: int32, ©, 1824) §
for (j: int32, @, 512} §
C_2[((ix512) + j)] = Bf32
for (k: int32, 8, &4) {
C_2[((i*512) + 1] = ((float32+)C_2[[(i*x512) + 11 + ((float32+)A_2[((i*64) + k)]+(float32+)B_2[((j*64} + KI11)
i
. -

https://tvm.apache.org/docs//how to/work with schedules/tensorize.html

https://tvm.apache.org/docs//how_to/work_with_schedules/tensorize.html

Solution to AutoTVM schedule template

AutoTVM Workflow Auto-scheduler Workflow
Step 1: # Matrix multiply # The same
Write a compute
definition C = te.compute((M, N), lambda x, y:

(relatively easy part)

te.sum(A[x, k] * B[k, y], axis=k))

Step 2:
Write a schedule
template

(difficult part)

20-100 lines of tricky DSL code # Not required

Define search space
cfg.define_split("tile_x", batch, num_outputs=4)
cfg.define_split("tile_y", out_dim, num_outputs=4)

Apply config into the template

bx, txz, tx, xi = cfg["tile x"].apply(s, C, C.op.axis[0])
by, tyz, ty, yi = cfg["tile_y"].apply(s, C, C.op.axis[1])
s[C].reorder(by, bx, tyz, txz, ty, tx, yi, xi)
s[CC].compute_at(s[C], tx)

Step 3:
Run auto-tuning
(automatic search)

tuner.tune(..) task.tune(..)

Table 1. Workflow Comparision

https://tvm.apache.org/2021/03/03/intro-auto-scheduler

https://tvm.apache.org/2021/03/03/intro-auto-scheduler

Solution to AutoTVM schedule template

Ansor: Generating High Performance Tensor
Programs for Deep Learning

More on Wednesday

https://tvm.apache.org/2021/03/03/intro-auto-scheduler

Low Level IR & Hardware Specific Tensorize Optimizations

ectorize

Memory Latency Hiding " St 4k PO 1
: -
- - 1 =gt Parallelization /
0 !—!dJ !% | E! o ’/" tﬁf
oy e !
g AEE 28
OO

| Vectorization
fori=ln — > for i=min,max
forj=1n/4 paralielize g, .—;

vec (Stmi(ij)) L vec (Stmt(ij))
i

Lot et et Bt B

Nested Polyhedral

| o . . C .]
i Hardware Intrinsic Mapping E Loop Oriented Optimization Techniques i
I H I
! C“nl operator > () Hardware IF Loop fusion Reordering Unrolling Slide windows |
| = - intrinsic | — i |
I il h_fT:;\r''Il'=_j|',;n- ”?('Of'.i=},ﬂ foi"f:j,4 :#:: %ﬂﬂ = I
|| fori=18 : Stmtl(i) <] Jorj=l.m Stmtl(1) ! |
| forj=18 gemm8x8(x, ¥, z) ! i Jori=Ln) Stm(ij) |
: fork=18 o Stmt2(i) = l Tiling I
: z(ij)=x(ki) yik) ! + l i
I : Stmtl(1) { I
R Tttt Tttt fori=ln fori=Lm Semtl(2) }
I Memory Allocation & Fetching Stmtl(i) forj=1n Stmtl(3) Fitn :
| Stmt2(i) Sont(i j) Stntl(4) Cache |
! []| Parallelization

| Dara Halide . Polyhedral

! " Autotuner Yc.i‘wduies

i mp

I

i | | | | | 7 fori=In it fori=ln

I for j=1n s SPH :orj=f n'4

o J ,

| Stmt(i,j) fork=1,4

|

I

I

I

I

1

]

I

I

1

I

I

Fig. 4. Overview of hardware-specific optimizations applied in DL compilers.

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

https://arxiv.org/abs/2002.03794

Low Level IR & Hardware Specific Tensorize Optimizations

Low Level optimizations are dependent on
hardware microarchitecture, memory model

Speed-up is either memory or compute bound

https://arxiv.org/abs/2002.03794

Tensorize Example: Matrix Mult S—
B

* Nested loop parallelism (exploiting HW T EE o Sl T
multi-thread hierarchy) ety manee e ey e
Compute Primitive
* Tiling & caching of data in (shared) memory ==t &= R B B
while ensuring memory scope definition +
atomic synchronization (if necessary) "TVM: An Automated End-to-End Optimizing

Compiler for Deep Learning

* Lowering to hardware via ISA specification

(a) (b)

FIGURE 13.1

(a) Gather and (b) scatter based thread arrangements.

Programming Massively Parallel
Processors — David B. Kirk

Special abstraction in Tensorization to support
Hardware Intrinsic

w, X = t.placeholder((8, 8)), t.placeholder((8, 8)) ,
k = t.reduce_axis((0, 8)) ‘deolare behavior ‘
y = t.compute((8, 8), lambda i, j: ‘4f#ﬂ~ﬂf””ﬂf#
t.sum(wli, k] * x[j, kI, axis=k))
def gemm_intrin_lower(inputs, outputs): lowering rP'e,to Qe”erate
ww_ptr = inputs [0]. access_pt r(“r") hardware intrinsics to carry
xx_ptr = inputs[1l].access_ptr("r") <«—1out the computation
zz_ptr = outputs[@].access_ptr("w")

compute = t.hardware_intrin("gemm8x8", ww_ptr, xx_ptr, zz_ptr)
reset = t.hardware_intrin("fill _zero", zz_ptr)

update = t.hardware_intrin("fuse_gehmeB_add", ww_ptr, xx_ptr, zz_phr)
return compute, reset, update

gemm8x8 = t.decl_tensor_intrin(y.op, gemm_intrin_Tlower)

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

Special abstraction in Tensorization to support
Hardware Intrinsic

* Leverages the tensor expression language to explicitly declare the behaviour
of the HW intrinsic and the lowering rule

* Enables integration of new intrinsic operations supported by custom
accelerators, or hand-crafted micro-kernels

* Accepts inputs of arbitrary dimensions, matching to the data layout required
by HW accelerator

* Decouples scheduling from specific hardware primitive (Halide scheduling
primitive extended within TVM)

DL Compiler System Architecture

Input format

otbLmodas T TensorFlow PYTOHRCH 2 Caffez @xnet 353%%) ONNX -

Hardware specific

‘Optimizations
Intrinsic mapping

Memory allocation

Memory latency hidin
Loop oriented opt
Parallelization

Ao
Scheduling
(8.0., polyhedr . Other unigue
Rs ...

oo e

Frameworks “F" O @ e n @
¥

| Computational Graph |
¥

Section 3 High Level Graph Rewriting
¥

| Optimized Computational Graph |
v

Operator-level Optimization and Code Generation
Declarative Hardware-Aware
Tensor Expressions Optimization Primitives
\‘ A/

Machine Learning Based
Automateti Optimizer

Section 4

Section 5

| Optimized Low Level Loop Program |

— 1 —

Target CPU GPU ASIC DsP More and more

platforms (XB6, ARM, RISC-V) (NVIDIA, AMD} (TPU, Inferentia, NNP, ... } Accelerators

Fig. 2. The overview of commonly adopted design architecture of DL compilers.

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

L "
[Accelerator Backend |[uwmir || cubAametal/opencL |

v
| Deployable Module |

Figure 2: System overview of TVM. The current stack
supports descriptions from many deep learning frame-
works and exchange formats, such as CoreML and
ONNX, to target major CPU, GPU and specialized ac-
celerators.

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

https://arxiv.org/abs/2002.03794

DL Compiler System Architecture

Input format : L] -
ofbLmoaets IF TensorFlow PYTHRCH O Caffez @xnet 5%) ONNX - Fameors. T O @ © @ ©
¥
| Computational Graph |
¥
Section 3 High Level Graph Rewriting
¥
| Optimized Computational Graph |
v
Operator-level Optimization and Code Generation
Section 4 Declarative Hardware-Aware
Auto-tuning Compilation Tensor ExpressiQEIi Ogtjgjization Primitives
tning Pl :
4 E?.L‘;":m o 1.Ju5t—|n-r'll'1i:'be . Machine Learning Based
3. Parameter searching Manual 2. Ahead-Of-Time Section 5 Automated Optimizer
\(o.g- Halice L
e.{)., Halide - —
T—— Code generston | Optimized Low Lelvel Loop Program |
1. Intel DNNL 2: CUDA — - L — —
T AMDMIOpen o 3. OpenCL [Accelerator Backend || LLVMIR || CUDA/Metal/OpencL]
B . 4. OpenGL
4. Other customized libs 5 ¥ ’
x | Deployable Module |
Figure 2: System overview of TVM. The current stack
Target cPu GPU ASIC DsP More and more supports descriptions from many deep learning frame-
platforms (XB6, ARM. RISCV) [NVIDIA, AMD) (TPU, Inferentia, NNP, ...) Accelerators

works and exchange formats, such as CoreML and
ONNX, to target major CPU, GPU and specialized ac-

Fig. 2. The overview of commonly adopted design architecture of DL compilers.

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

celerators.

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

https://arxiv.org/abs/2002.03794

Auto-tune: Optimizing Operator Kernels

Automated Schedule Optimizer
Goal: To find optimal operator implementation

1. Schedule explorer — develops search space by proposing promising
new configurations based on factors such as (developer may define):
1. Modifying loop order
2. Optimizing for memory hierarchy
3. Tiling size
4. Loop unrolling factor

2. ML cost model — predicts performance of a given configuration and is

updated through repetitive benchmarking on hardware target with
varied workloads

ML Based Cost Model

Traditional Auto-tuning

Run on a
same machine

()

BlackBox Tuner

AutoTVM
Hetegeneous
Device Cluster
NVIIDA GPU AMD GPU FPGA

Intel CPU ARM CPU

()

Tuner

()

Transferable
Machine Learning
Cost Model

Figure 2. Comparison of Traditional Auto-tuning and AutoTVM

https://tvm.apache.org/2018/10/03/auto-opt-all

Via RPC interface with remote
device over IP or cross-compiled
target via JTAG and retrieve
performance metrices

TensorOp Schedule Space Device Cluster
Specification Template
l Raspberry Pi |
— 1 Mali GPU |
LDatabase—]"'—g Schedule Explorer — P® . Tracker
1 get_perf Nvidia GPU |
. e guer update)
training —.)T l FPGA Board |
data -
ML Cost Model
t uer < tHW runtime
Need Learn
ee
Data Model from
Method Category . Hardware :
Cost Bias His-
Info
_ _ tory
Blackbox auto-tuning high none no no
Predefined cost model = none high yes no
ML based cost model low low no ves

Table 1: Comparison of automation methods. Model bias
refers to inaccuracy due to modeling.

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

https://tvm.apache.org/2018/10/03/auto-opt-all

ML Based Cost Model

* To approximate target hardware performance when considering candidate kernel designs

 GBT and TreeRNN based search to evaluate features: memory access count, memory buffer re-use ratio,
loop structure [vectorized, unrolled, parallel], etc

Algorithm 1: Learning to Optimize Tensor Programs

Input : Transformation space S,

Output: Selected schedule configuration s*
D+ 0

while n_trials < max _n trials do

// Pick the next promising batch

@) + run parallel simulated annealing to collect candidates in S, using energy function f
S+ run greedy submodular optimization to pick (1 — €)b-subset from () by maximizing [Equation 3
S+ S U { Randomly sample eb candidates. }
// Run measurement on hardware environment
for sin S do
| c+ flgle.s)) D« DU{(e,s,0)}
end
// Update cost model
update [using D
n_trials <— n_trials + b

end
s* « history best schedule configuration

More in Wednesday'’s talk: Learning to Optimize Tensor Programs

TVM vs Competitors: GPU, ARM Hardware Speed-up

BN Tensorflow XLA B MXNet ml TvYMm
[Tensorflow BN TVM w/o graph opt
7.0 0.9

0.8
0.7

0.6

0.51
0.4

0.31
0.24
0.14
0.0-

0 ResNer.13 MobileNet

L5STM LM DQN DCGAN

Figure 14: GPU end-to-end evaluation for TVM,
MXNet, Tensorflow, and Tensorflow XL A. Tested on the
NVIDIA Titan X.

1.6X to 3.8X Speed-up compared to baselines

B Tensorflow Lite ~ B0 TVM w/o graph opt 1 TVM

12.0

10.0

8.0

6.0

4.0+
2.0

0.0-

FesNet-18 MaobileNet DQN

Figure 16: ARM AS53 end-to-end evaluation of TVM and
TFLite.

TFLite handcrafted kernels compared to
TVM AutoTune

TVM vs ARM Compute Library Speed-up

ARMComputeLib TVMw /o graph opt [TVM
250.0 5.0
200.01 4.01
£ 150.0 3.0-
t
= 100.0 1 2.0+
50.0+ I l 1.0+
0.0 - - - - - - 0.0 - - T
float32 floatl6 float32 floatl6 float32 floatlh
ResNet-18 MobileNet DON

Figure 19: End-to-end experiment results on Mali-
T860OMP4. Two data types, float32 and floatl6, were
evaluated.

ARM Compute Library with ARMNN integration is ARM’s optimized kernels for operator execution on
their hardware targets (Cortex and Mali). TVM achieves 1.2X to 1.6X speedup on the Mali GPU with
FP32 and FP16.

DL Compiler System Architecture

Input format
of DL models

TensorFlow PYTHRCH © Caffe? -.Xnet 7’-"’/-'535@ {,} ONNX --

J\ y Compiler frontend

Hardware specific
Optimizations

Low-level IR |
Operator IR
(Device specific)

Frameworks ‘l-" C) @? @ m @
v

| Computational Graph |

Y
Section 3 High Level Graph Rewriting
¥

| Optimized Computational Graph |
v

Operator-level Optimization and Code Generation

Declarative
Tensor Expressions

. Hardware-Aware
Section 4 Optimization Primitives
~ ‘,.---"'

Machine Learning Based

Section 5 Auiomatet1 Optimizer

| Optimized Low Level Loop Program |

1. Intrinsic mapping
Transformation Computation graph 2. Memory allocation ~
Symbolic representation Optimizations 3. Memory latency hidin 1. Halide based
1. = relay (TVM) 1. Algebraic simplification 4 Loop oriented opt Auto 2. Polyhedral
2. - bridge (nGraph) 2. Operator fusion 5 Parallelization Scheduling model based
3. = ATen (TC) 3. Operation sinking g (8.0., polyhedr 3. Other unigue
4. - direct translation 4. CSE IRs ...
T 3. DCE
- 6. Static memory planning - - —
[} 7. Layout transformation [Auto-tuning Compilation
- [8 . o & 1. Parameterization Scheme
ngh—lleuell IR ! Graph IR -] £ 2 Cost model 1 . Just-In-Time
(Device independent) £ E g 3. Parameter searching Manual 2_ Ahead-Of-Time
2 Schedulin
1. Representation g Methads &2 \EE o Halidg
DAG-based g 1. Pattern matcher g) 3 X = Code generation
Let-binding-based &) 2. Graph rewriting &) Using kernel libraries 1. LLVM
Tensor computation 1. Intel DNNL 2. CUDA
Lambda { Einstein 2 NV cuDNN | TensorRT 3. OpenCL
3. AMD MiOpen 4 OpenGL
2. Implementation Debug tools 4. Other customized libs 5
. {IR dumping)
Data representation
1. Text form 1
Operators supported 3. DAG form —
T Compiler backend
Target CPU GPU ASIC DspP More and more
platforms (X86, ARM, RISC-V) (NVIDIA, AMD) (TPU, Inferentia, MNP, ...) o Accelerators

Fig. 2. The overview of commonly adopted design architecture of DL compilers.

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

L4

LLVM IR

v
| Deployable Module |

[Accelerator Backend || || CLJBNMetaI!OpenCL |

Figure 2: System overview of TVM. The current stack
supports descriptions from many deep learning frame-
works and exchange formats, such as CoreML and
ONNX, to target major CPU, GPU and specialized ac-
celerators.

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

https://arxiv.org/abs/2002.03794

Discussion Questions

1. While TVM achieves best-in-class speed-up for inference time compared to baselines, is model
accuracy preserved through the compilation?

2. The compiler platforms search for optimal kernels using the ML based cost technique to approximate
the behaviour of a kernel on hardware. The true architecture of the accelerator is opaque.

a. Is this approach specific to an architecture and hence gated by code generators like LLVM/CUDA?

b. Can this technique be generalized across a family of chips that share an ISA, although microarchitecture could
be different?

c. Can this technique be extended to explore optimal device assignment for distributed compute within a
MPSoC. Eg: Xilinx Ultrascale with ARM Cortex-A, Cortex-R and Mali GPU core?

3. AutoTVM approach requires profiling on physical hardware, and feedback to tune cost function. To
what extent can this system be augmented with virtual hardware to perform hardware-in-the-loop
Auto-Tune?

4. Can TVM be included into training phase to provide feedback and develop an unconditionally stable
model with guaranteed performance metrics at inference time?

* Metrics: DC power cost, memory footprint, inference latency, accuracy preservation within tolerance

