
Halide
Decoupling Algorithms from Schedules for Easy Optimization of Image

Processing Pipelines

Paper presentaion for 15-849
Bohan Hou

Overview

● Image Processing Pipeline Optimization
○ Multiple optimization techniques
○ Engineering Complexity

● Key idea: decouple algorithm from schedule
○ algorithm: what is computed
○ schedule: when and where to compute

Problem: Image Processing Pipeline Optimization

Camera Raw Pipeline Local Laplacian Filter

Bilateral Grid Snake Image Segmentation

Challenge: Engineering Complexity

Example: Local Laplacian Filters

● 1500 lines of expert-optimized C++
● Multi-threaded, SSE SIMD insts
● 3 months of work
● 10x faster than reference C code

Used in Adobe PhotoShop
Camara Raw / Lightroom

Note: data from https://halide-lang.org/assets/lectures/Halide_CVPR_intro.pdf

https://halide-lang.org/assets/lectures/Halide_CVPR_intro.pdf

Challenge: Engineering Complexity
Example: 3x3 blur

Techniques:

● Tiling
● Fusing
● Vectorization
● Multi-threading
● Redundant Computation

Lacks readability, portablity, modularity 11x faster on CPU

Method: Decouple Algorithm from Schedule

Algorithm: what is computed

Schedule: when are where it’s computed

● Easy for programmers to build pipelines
● Easy for programmers to specify & explore optimizations
● Easy for compilers to generate fast code

Algorithm: Pure functional

● Declarative specification
● Pipeline stages are pure functions from coordinates to values
● No explicit bounds
● No loops or traversal orders
● Only feed forward pipelines

Algorithm of 3x3 blur

Algorithm: Pure functional

Reduction functions

● initial value function: specify the initial value of each output point
● reduction function: specify the update rules of output points
● reduction domain: specify the reduction order

Algorithm of histograms

Schedule

Schedule defines intra-stage order, inter-stage interleaving

For each stage:

1) In which order should we compute its values?
2) When should we compute its inputs?
3) How to map onto parallel excution resources like SIMD units and GPU blocks?

traversal order

parallel execution

producer consumer relation

Schedule: intra-stage order, inter-stage interleaving

Compiler Implementation

Lowering:

● Generate loop nests
● Allocate storage for function

realizations

Bounds inference:

● Replace function call with
load/store to the storages

Evaluation
Reduced engineering effort
Better Readability
Better Performance

Portability

Thanks

Discussion Questions

● Can we design a framwork to automatically schedule a given algorithm?

● Is Halide language Turing complete? Is there any useful operator that can not
be expressed by Halide? How can we improve it then?

TVM: An Automated End-to-End
Optimizing Compiler for Deep

Learning
Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,

Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
Carlos Guestrin, Arvind Krishnamurthy

Presented by Ashwin Venkatram

7 February 2022

Contents

• Motivation for DL Compilers & Landscape of HW accelerators

• DL Compiler System Architecture
• Front-end IR

• Back-end IR

• TVM Performance

• Discussion Questions

Motivation for DL Compilers &
Current State

Case Study: Real-time Anomaly Detection

NVIDIA GTC Nov 2021 Conference Presentation
Scalable, Accelerated Hardware-agnostic ML inference with NVIDIA Triton and ARM NN

Case Study: Real-time Anomaly Detection

NVIDIA GTC Nov 2021 Conference Presentation
Scalable, Accelerated Hardware-agnostic ML inference with NVIDIA Triton and ARM NN

System can only perform as
best as vendor provided
optimized kernels and
implementation of operators!

Latency gated by vendor
provided handcrafted kernels

Heterogenous Hardware Targets

ARM Developer Conference: Nov 2019 Tech Talk

• Varied HW targets available within the ARM
ecosystem

• What about Intel CPU, NVIDIA GPUs, Xilinx
SoC FPGA + ARM cores, dedicated
accelerators?
• GPU: TensorRT, FPGA: Xilinx Vitis-AI

• How would a ML developer deploy to a
different target and benchmark? Tedious to
cross-compile, deploy, measure and
feedback manually. Can this be automated?

• Would deployment optimization need to be
re-done for each target independently on
vendor provided library?

Compatibility with Hardware Microarchitecture

• Hardware accelerators primarily differ in:
• Data layout

• Memory layout

• Optimizations to be done by compiler stack and
not within hardware accelerator (excluding
CPU), enabling leaner silicon design with
software defined optimization

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

Current State Pain-Points

• ML System Designer’s difficult choices:
• Avoiding graph optimizations that yield new operations not supported in predefined operator

library

• Using unoptimized implementation of new operators used in models

• Deploying models to production is manual

• Requires re-optimization of model operator performance for each desired hardware target
using vendor specific runtime libraries

• Solution Motivation:
• Deep Learning compilers take a high-level IR from existing frameworks and generate low-level

optimized code

• Model architecture agnostic and hardware target agnostic to enable running heterogeneous
models on heterogeneous hardware accelerators

DL Compiler System Architecture

Tianqi Chen – TVM Conference Overview Presentation
https://sampl.cs.washington.edu/tvmconf/slides/Tianqi-Chen-TVM-Stack-Overview.pdf

https://sampl.cs.washington.edu/tvmconf/slides/Tianqi-Chen-TVM-Stack-Overview.pdf

DL Compiler System Architecture

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

COMPILER FRONTEND COMPILER BACKEND

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

https://arxiv.org/abs/2002.03794

TVM Key Innovations

1. Tensor Expression Language

2. Automated Program Optimization Framework via GBT and a ML based cost
model

3. Graph Re-writer + Automatic code generation

Note: This paper discusses #2 – #4

End-User Example

TVM API to get a deployable module

import tvm as t

Use keras framework as example, import model

graph, params = t.frontend.from_keras(keras_model)

target = t.target.cuda()

graph, lib, params = t.compiler.build(graph, target, params)

Compiled runtime module contains:

• Graph - the final optimized computational graph

• Lib - generated operators

• Params - module parameters

Deploying model to the target back-end

import tvm.runtime as t

module = runtime.create(graph, lib, t.cuda(0))

module.set_input(**params)

module.run(data=data_array)

output = tvm.nd.empty(out_shape, ctx=t.cuda(0))

module.get_output(0, output)

Note: TVM supports multiple deployment back-ends in
languages such as C++, Java and Python.

DL Compiler System Architecture

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

COMPILER FRONTEND COMPILER BACKEND

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

https://arxiv.org/abs/2002.03794

DL Compiler System Architecture

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

COMPILER BACKEND

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

https://arxiv.org/abs/2002.03794

High-Level IR Optimizations

• Computation graph optimizations

• Operator Fusion (aka kernel fusion)

• Constant-folding (pre-compute graph sections that are
statically determined)

• Static memory planning (pre-allocation to hold
intermediate tensors)

• Data layout transformations (required to take advantage
of hardware accelerator memory layout and re-sizing of
operation kernel)

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

https://arxiv.org/abs/2002.03794

3 Rules for Operator Fusion

1:1 mapping

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learninghttps://www.programmerall.com/article/68731401786/

https://www.programmerall.com/article/68731401786/

3 Rules for Operator Fusion

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learninghttps://www.programmerall.com/article/68731401786/

Operator fusion results in new operations that may not be supported by handcrafted kernels in vendor provided
libraries. TVM proposes a code generation approach and searches the space of suggested operator kernels to pick
the best one.

1:1 mapping

https://www.programmerall.com/article/68731401786/

DL Compiler System Architecture

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

COMPILER FRONTEND COMPILER BACKEND

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

https://arxiv.org/abs/2002.03794

DL Compiler System Architecture

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

COMPILER BACKEND

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

COMPILER FRONTEND

https://arxiv.org/abs/2002.03794

DL Compiler System Architecture

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

COMPILER FRONTEND

COMPILER BACKEND

https://arxiv.org/abs/2002.03794

Generating Tensor Operations

Builds on Halide’s design style of decoupling scheduling from computation rules

Only for TPU like
accelerators

Generating Tensor Operations

Builds on Halide’s design style of decoupling scheduling from computation rules

Only for TPU like
accelerators

User-defined
expression to schedule
each operation

Requires knowledge of
target hardware and
operator semantics

Tensorize
Example

Matrix
Mult

https://tvm.apache.org/docs//how_to/work_with_schedules/tensorize.html

To map from tensor expression to low level code

https://tvm.apache.org/docs//how_to/work_with_schedules/tensorize.html

Solution to AutoTVM schedule template

https://tvm.apache.org/2021/03/03/intro-auto-scheduler

https://tvm.apache.org/2021/03/03/intro-auto-scheduler

Solution to AutoTVM schedule template

https://tvm.apache.org/2021/03/03/intro-auto-scheduler

Ansor: Generating High Performance Tensor
Programs for Deep Learning

More on Wednesday

https://tvm.apache.org/2021/03/03/intro-auto-scheduler

Low Level IR & Hardware Specific Tensorize Optimizations

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

https://arxiv.org/abs/2002.03794

Low Level IR & Hardware Specific Tensorize Optimizations

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

Low Level optimizations are dependent on
hardware microarchitecture, memory model

Speed-up is either memory or compute bound

https://arxiv.org/abs/2002.03794

• Nested loop parallelism (exploiting HW
multi-thread hierarchy)

• Tiling & caching of data in (shared) memory
while ensuring memory scope definition +
atomic synchronization (if necessary)

• Lowering to hardware via ISA specification
TVM: An Automated End-to-End Optimizing

Compiler for Deep Learning

Programming Massively Parallel
Processors – David B. Kirk

Tensorize Example: Matrix Mult

Special abstraction in Tensorization to support
Hardware Intrinsic

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

Special abstraction in Tensorization to support
Hardware Intrinsic

• Leverages the tensor expression language to explicitly declare the behaviour
of the HW intrinsic and the lowering rule

• Enables integration of new intrinsic operations supported by custom
accelerators, or hand-crafted micro-kernels

• Accepts inputs of arbitrary dimensions, matching to the data layout required
by HW accelerator

• Decouples scheduling from specific hardware primitive (Halide scheduling
primitive extended within TVM)

DL Compiler System Architecture

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

COMPILER FRONTEND

COMPILER BACKEND

https://arxiv.org/abs/2002.03794

DL Compiler System Architecture

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

COMPILER FRONTEND

COMPILER BACKEND

https://arxiv.org/abs/2002.03794

Auto-tune: Optimizing Operator Kernels

Automated Schedule Optimizer

Goal: To find optimal operator implementation

1. Schedule explorer – develops search space by proposing promising
new configurations based on factors such as (developer may define):
1. Modifying loop order

2. Optimizing for memory hierarchy

3. Tiling size

4. Loop unrolling factor

2. ML cost model – predicts performance of a given configuration and is
updated through repetitive benchmarking on hardware target with
varied workloads

ML Based Cost Model

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

https://tvm.apache.org/2018/10/03/auto-opt-all

Via RPC interface with remote
device over IP or cross-compiled
target via JTAG and retrieve
performance metrices

tquery < tHW_runtime

https://tvm.apache.org/2018/10/03/auto-opt-all

ML Based Cost Model
• To approximate target hardware performance when considering candidate kernel designs

• GBT and TreeRNN based search to evaluate features: memory access count, memory buffer re-use ratio,
loop structure [vectorized, unrolled, parallel], etc

More in Wednesday’s talk: Learning to Optimize Tensor Programs

TVM vs Competitors: GPU, ARM Hardware Speed-up

1.6X to 3.8X Speed-up compared to baselines
TFLite handcrafted kernels compared to

TVM AutoTune

TVM vs ARM Compute Library Speed-up

ARM Compute Library with ARMNN integration is ARM’s optimized kernels for operator execution on
their hardware targets (Cortex and Mali). TVM achieves 1.2X to 1.6X speedup on the Mali GPU with
FP32 and FP16.

DL Compiler System Architecture

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning

https://arxiv.org/abs/2002.03794

Discussion Questions
1. While TVM achieves best-in-class speed-up for inference time compared to baselines, is model

accuracy preserved through the compilation?

2. The compiler platforms search for optimal kernels using the ML based cost technique to approximate
the behaviour of a kernel on hardware. The true architecture of the accelerator is opaque.

a. Is this approach specific to an architecture and hence gated by code generators like LLVM/CUDA?

b. Can this technique be generalized across a family of chips that share an ISA, although microarchitecture could
be different?

c. Can this technique be extended to explore optimal device assignment for distributed compute within a
MPSoC. Eg: Xilinx Ultrascale with ARM Cortex-A, Cortex-R and Mali GPU core?

3. AutoTVM approach requires profiling on physical hardware, and feedback to tune cost function. To
what extent can this system be augmented with virtual hardware to perform hardware-in-the-loop
Auto-Tune?

4. Can TVM be included into training phase to provide feedback and develop an unconditionally stable
model with guaranteed performance metrics at inference time?

• Metrics: DC power cost, memory footprint, inference latency, accuracy preservation within tolerance

