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Overview

● Image Processing Pipeline Optimization
○ Multiple optimization techniques
○ Engineering Complexity

● Key idea: decouple algorithm from schedule
○ algorithm: what is computed
○ schedule: when and where to compute



Problem: Image Processing Pipeline Optimization

Camera Raw Pipeline Local Laplacian Filter

Bilateral Grid Snake Image Segmentation



Challenge: Engineering Complexity

Example: Local Laplacian Filters

● 1500 lines of expert-optimized C++
● Multi-threaded, SSE SIMD insts
● 3 months of work
● 10x faster than reference C code 

Used in Adobe PhotoShop 
Camara Raw / Lightroom

Note: data from https://halide-lang.org/assets/lectures/Halide_CVPR_intro.pdf

https://halide-lang.org/assets/lectures/Halide_CVPR_intro.pdf


Challenge: Engineering Complexity
Example: 3x3 blur

Techniques:

● Tiling
● Fusing
● Vectorization
● Multi-threading
● Redundant Computation

Lacks readability, portablity, modularity 11x faster on CPU



Method: Decouple Algorithm from Schedule

Algorithm: what is computed

Schedule: when are where it’s computed

● Easy for programmers to build pipelines
● Easy for programmers to specify & explore optimizations
● Easy for compilers to generate fast code



Algorithm: Pure functional 

● Declarative specification
● Pipeline stages are pure functions from coordinates to values
● No explicit bounds
● No loops or traversal orders
● Only feed forward pipelines

Algorithm of 3x3 blur



Algorithm: Pure functional 

Reduction functions

● initial value function: specify the initial value of each output point
● reduction function: specify the update rules of output points
● reduction domain: specify the reduction order

Algorithm of histograms



Schedule

Schedule defines intra-stage order, inter-stage interleaving

For each stage:

1) In which order should we compute its values?
2) When should we compute its inputs?
3) How to map onto parallel excution resources like SIMD units and GPU blocks? 

traversal order

parallel execution

producer consumer relation



Schedule: intra-stage order, inter-stage interleaving



Compiler Implementation

Lowering:

● Generate loop nests
● Allocate storage for function 

realizations

Bounds inference:

● Replace function call with 
load/store to the storages



Evaluation
Reduced engineering effort
Better Readability
Better Performance

Portability



Thanks



Discussion Questions

● Can we design a framwork to automatically schedule a given algorithm?

● Is Halide language Turing complete? Is there any useful operator that can not 
be expressed by Halide? How can we improve it then?
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Motivation for DL Compilers & 
Current State



Case Study: Real-time Anomaly Detection

NVIDIA GTC Nov 2021 Conference Presentation
Scalable, Accelerated Hardware-agnostic ML inference with NVIDIA Triton and ARM NN



Case Study: Real-time Anomaly Detection

NVIDIA GTC Nov 2021 Conference Presentation
Scalable, Accelerated Hardware-agnostic ML inference with NVIDIA Triton and ARM NN

System can only perform as 
best as vendor provided 
optimized kernels and 
implementation of operators!

Latency gated by vendor 
provided handcrafted kernels



Heterogenous Hardware Targets

ARM Developer Conference: Nov 2019 Tech Talk

• Varied HW targets available within the ARM 
ecosystem

• What about Intel CPU, NVIDIA GPUs, Xilinx 
SoC FPGA + ARM cores, dedicated 
accelerators?
• GPU: TensorRT, FPGA: Xilinx Vitis-AI

• How would a ML developer deploy to a 
different target and benchmark? Tedious to 
cross-compile, deploy, measure and 
feedback manually. Can this be automated?

• Would deployment optimization need to be 
re-done for each target independently on 
vendor provided library?



Compatibility with Hardware Microarchitecture

• Hardware accelerators primarily differ in:
• Data layout

• Memory layout

• Optimizations to be done by compiler stack and 
not within hardware accelerator (excluding 
CPU), enabling leaner silicon design with 
software defined optimization

TVM: An Automated End-to-End Optimizing 
Compiler for Deep Learning



Current State Pain-Points

• ML System Designer’s difficult choices:
• Avoiding graph optimizations that yield new operations not supported in predefined operator 

library

• Using unoptimized implementation of new operators used in models

• Deploying models to production is manual

• Requires re-optimization of model operator performance for each desired hardware target 
using vendor specific runtime libraries

• Solution Motivation:
• Deep Learning compilers take a high-level IR from existing frameworks and generate low-level 

optimized code

• Model architecture agnostic and hardware target agnostic to enable running heterogeneous 
models on heterogeneous hardware accelerators



DL Compiler System Architecture



Tianqi Chen – TVM Conference Overview Presentation
https://sampl.cs.washington.edu/tvmconf/slides/Tianqi-Chen-TVM-Stack-Overview.pdf

https://sampl.cs.washington.edu/tvmconf/slides/Tianqi-Chen-TVM-Stack-Overview.pdf


DL Compiler System Architecture

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

COMPILER FRONTEND COMPILER BACKEND

TVM: An Automated End-to-End Optimizing 
Compiler for Deep Learning

https://arxiv.org/abs/2002.03794


TVM Key Innovations

1. Tensor Expression Language

2. Automated Program Optimization Framework via GBT and a ML based cost 
model

3. Graph Re-writer + Automatic code generation

Note: This paper discusses #2 – #4



End-User Example

TVM API to get a deployable module

import tvm as t

# Use keras framework as example, import model

graph, params = t.frontend.from_keras(keras_model)

target = t.target.cuda()

graph, lib, params = t.compiler.build(graph, target, params)

Compiled runtime module contains:

• Graph - the final optimized computational graph

• Lib - generated operators

• Params - module parameters

Deploying model to the target back-end

import tvm.runtime as t

module = runtime.create(graph, lib, t.cuda(0))

module.set_input(**params)

module.run(data=data_array)

output = tvm.nd.empty(out_shape, ctx=t.cuda(0))

module.get_output(0, output)

Note: TVM supports multiple deployment back-ends in 
languages such as C++, Java and Python.



DL Compiler System Architecture

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

COMPILER FRONTEND COMPILER BACKEND

TVM: An Automated End-to-End Optimizing 
Compiler for Deep Learning

https://arxiv.org/abs/2002.03794


DL Compiler System Architecture

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

COMPILER BACKEND

TVM: An Automated End-to-End Optimizing 
Compiler for Deep Learning

https://arxiv.org/abs/2002.03794


High-Level IR Optimizations

• Computation graph optimizations

• Operator Fusion (aka kernel fusion)

• Constant-folding (pre-compute graph sections that are
statically determined)

• Static memory planning (pre-allocation to hold
intermediate tensors)

• Data layout transformations (required to take advantage
of hardware accelerator memory layout and re-sizing of
operation kernel)

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

https://arxiv.org/abs/2002.03794


3 Rules for Operator Fusion

1:1 mapping

TVM: An Automated End-to-End Optimizing 
Compiler for Deep Learninghttps://www.programmerall.com/article/68731401786/

https://www.programmerall.com/article/68731401786/


3 Rules for Operator Fusion

TVM: An Automated End-to-End Optimizing 
Compiler for Deep Learninghttps://www.programmerall.com/article/68731401786/

Operator fusion results in new operations that may not be supported by handcrafted kernels in vendor provided 
libraries. TVM proposes a code generation approach and searches the space of suggested operator kernels to pick 
the best one.

1:1 mapping

https://www.programmerall.com/article/68731401786/


DL Compiler System Architecture

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

COMPILER FRONTEND COMPILER BACKEND

TVM: An Automated End-to-End Optimizing 
Compiler for Deep Learning

https://arxiv.org/abs/2002.03794


DL Compiler System Architecture

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

COMPILER BACKEND

TVM: An Automated End-to-End Optimizing 
Compiler for Deep Learning

COMPILER FRONTEND

https://arxiv.org/abs/2002.03794


DL Compiler System Architecture

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

TVM: An Automated End-to-End Optimizing 
Compiler for Deep Learning

COMPILER FRONTEND

COMPILER BACKEND

https://arxiv.org/abs/2002.03794


Generating Tensor Operations

Builds on Halide’s design style of decoupling scheduling from computation rules

Only for TPU like 
accelerators



Generating Tensor Operations

Builds on Halide’s design style of decoupling scheduling from computation rules

Only for TPU like 
accelerators

User-defined 
expression to schedule 
each operation

Requires knowledge of 
target hardware and 
operator semantics



Tensorize 
Example

Matrix 
Mult

https://tvm.apache.org/docs//how_to/work_with_schedules/tensorize.html

To map from tensor expression to low level code

https://tvm.apache.org/docs//how_to/work_with_schedules/tensorize.html


Solution to AutoTVM schedule template

https://tvm.apache.org/2021/03/03/intro-auto-scheduler

https://tvm.apache.org/2021/03/03/intro-auto-scheduler


Solution to AutoTVM schedule template

https://tvm.apache.org/2021/03/03/intro-auto-scheduler

Ansor: Generating High Performance Tensor
Programs for Deep Learning

More on Wednesday

https://tvm.apache.org/2021/03/03/intro-auto-scheduler


Low Level IR & Hardware Specific Tensorize Optimizations

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

https://arxiv.org/abs/2002.03794


Low Level IR & Hardware Specific Tensorize Optimizations

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

Low Level optimizations are dependent on 
hardware microarchitecture, memory model

Speed-up is either memory or compute bound

https://arxiv.org/abs/2002.03794


• Nested loop parallelism (exploiting HW 
multi-thread hierarchy)

• Tiling & caching of data in (shared) memory 
while ensuring memory scope definition + 
atomic synchronization (if necessary)

• Lowering to hardware via ISA specification
TVM: An Automated End-to-End Optimizing 

Compiler for Deep Learning

Programming Massively Parallel 
Processors – David B. Kirk

Tensorize Example: Matrix Mult



Special abstraction in Tensorization to support 
Hardware Intrinsic

TVM: An Automated End-to-End Optimizing 
Compiler for Deep Learning



Special abstraction in Tensorization to support 
Hardware Intrinsic

• Leverages the tensor expression language to explicitly declare the behaviour
of the HW intrinsic and the lowering rule

• Enables integration of new intrinsic operations supported by custom 
accelerators, or hand-crafted micro-kernels

• Accepts inputs of arbitrary dimensions, matching to the data layout required 
by HW accelerator

• Decouples scheduling from specific hardware primitive (Halide scheduling 
primitive extended within TVM)



DL Compiler System Architecture

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

TVM: An Automated End-to-End Optimizing 
Compiler for Deep Learning

COMPILER FRONTEND

COMPILER BACKEND

https://arxiv.org/abs/2002.03794


DL Compiler System Architecture

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

TVM: An Automated End-to-End Optimizing 
Compiler for Deep Learning

COMPILER FRONTEND

COMPILER BACKEND

https://arxiv.org/abs/2002.03794


Auto-tune: Optimizing Operator Kernels

Automated Schedule Optimizer

Goal: To find optimal operator implementation

1. Schedule explorer – develops search space by proposing promising 
new configurations based on factors such as (developer may define):
1. Modifying loop order

2. Optimizing for memory hierarchy

3. Tiling size

4. Loop unrolling factor

2. ML cost model – predicts performance of a given configuration and is
updated through repetitive benchmarking on hardware target with 
varied workloads



ML Based Cost Model

TVM: An Automated End-to-End Optimizing 
Compiler for Deep Learning

https://tvm.apache.org/2018/10/03/auto-opt-all

Via RPC interface with remote 
device over IP or cross-compiled 
target via JTAG and retrieve 
performance metrices

tquery < tHW_runtime

https://tvm.apache.org/2018/10/03/auto-opt-all


ML Based Cost Model
• To approximate target hardware performance when considering candidate kernel designs

• GBT and TreeRNN based search to evaluate features: memory access count, memory buffer re-use ratio, 
loop structure [vectorized, unrolled, parallel], etc

More in Wednesday’s talk: Learning to Optimize Tensor Programs



TVM vs Competitors: GPU, ARM Hardware Speed-up

1.6X to 3.8X Speed-up compared to baselines
TFLite handcrafted kernels compared to 

TVM AutoTune



TVM vs ARM Compute Library Speed-up

ARM Compute Library with ARMNN integration is ARM’s optimized kernels for operator execution on 
their hardware targets (Cortex and Mali). TVM achieves 1.2X to 1.6X speedup on the Mali GPU with 
FP32 and FP16.



DL Compiler System Architecture

The Deep Learning Compiler: A Comprehensive Survey
https://arxiv.org/abs/2002.03794

TVM: An Automated End-to-End Optimizing 
Compiler for Deep Learning

https://arxiv.org/abs/2002.03794


Discussion Questions
1. While TVM achieves best-in-class speed-up for inference time compared to baselines, is model

accuracy preserved through the compilation?

2. The compiler platforms search for optimal kernels using the ML based cost technique to approximate
the behaviour of a kernel on hardware. The true architecture of the accelerator is opaque.

a. Is this approach specific to an architecture and hence gated by code generators like LLVM/CUDA?

b. Can this technique be generalized across a family of chips that share an ISA, although microarchitecture could
be different?

c. Can this technique be extended to explore optimal device assignment for distributed compute within a
MPSoC. Eg: Xilinx Ultrascale with ARM Cortex-A, Cortex-R and Mali GPU core?

3. AutoTVM approach requires profiling on physical hardware, and feedback to tune cost function. To
what extent can this system be augmented with virtual hardware to perform hardware-in-the-loop
Auto-Tune?

4. Can TVM be included into training phase to provide feedback and develop an unconditionally stable
model with guaranteed performance metrics at inference time?

• Metrics: DC power cost, memory footprint, inference latency, accuracy preservation within tolerance


