
Elias Jaeaesaari 2/9/2022

Learning to Optimize Tensor Programs
Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry
Moreau, Luis Ceze, Carlos Guestrin, Arvind Krishnamurthy

Overview

TargetModel

We want to efficiently deploy models to a variety of platforms

Overview

Recall: TVM allows us to separate the algorithm (what is
computed) of a program from its schedule (how it is computed)

AutoTVM finds the best schedule automatically by using

Cost-model based search
Transfer learning

The problem

How do we efficiently explore the space of possible programs?

Cij = ∑
k

AkiBkj

for yo in range(128):
 for xo in range(128):
 intrin.fill_zero(C[yo*8:yo*8+8][xo*8:xo*8+8])
 for ko in range(128):
 intrin.fused_gemm8x8_add(
 C[yo*8:yo*8+8][xo*8:xo*8+8],
 A[yo*8:yo*8+8][xo*8:xo*8+8],
 B[yo*8:yo*8+8][xo*8:xo*8+8])

for yo in range(1024 / ty):
 for xo in range(1024 / tx):
 C[yo*ty:yo*ty+ty][xo*tx:xo*tx+x] = 0
 for k in range(1024):
 for yi in range(ty):
 for xi in range(tx):
 C[yo*ty+yi][xo*tx+xi] +=
 A[k][yo*ty+yi] * B[k][xo*tx+xi]

for y in range(128):
 for x in range(128):
 C[y][x] = 0
 for k in range(128):
 C[y][x] += A[k][y] * B[k][x]

…

Possibly millions of programs!

Hyperparameter optimization

Sequential Model-based Global Optimization
1. Choose according to a surrogate model

2. Evaluate

3. Add to training data

4. Fit a new surrogate model

5. Repeat

x⋆

f(x⋆)

(x, f(x⋆))

E.g. Gaussian process or
tree-structured Parzen estimator

Assume is a black-box
and expensive to evaluate

f

Find the best set of hyperparameters by optimizing
a costly to evaluate fitness function f

AutoTVM

Hardware
environment

Surrogate
model

Exploration
module

Expression

Cij = ∑
k

AkiBkj

Schedule space

Feature representation

Extract features from AST for every loop variable:

Loop length, vectorizable, parallelizable, …

For every buffer: touch count, reuse ratio, …

Feature representation

Alternative representation using TreeGRU

Recursively encode AST into an embedding vector

Choosing candidates

L(S) = − ∑
s∈S

surrogate_model(s) + α × (# configuration components covered by S)

Encourage diversity by maximizing

Encourage exploration by choosing candidates randomlyϵb

Balance
quality

Balance
diversity

Putting it all together

Use metaheuristic to optimize surrogate

Encourage diversity and exploration

Transfer learning

In practice, we need to optimize many workloads

Transfer what has been learned from previous workloads:

1. Use a transferable representation

2. Combine ̂f(x) = ̂f (global)(x) + ̂f (local)(x)

Results

Results

Summary
By using an efficient cost model and transfer learning,
AutoTVM quickly and automatically finds efficient schedules

…with some caveats

1. Need hand-crafted rules to express schedule templates

2. Cost model relies on hand-crafted features

3. Learning does not generalize across different domains

Discussion questions

• AutoTVM uses transfer learning to speed up the optimization across
workloads. Could we use transfer learning to speed up the optimization e.g.
across different CPUs? What about from CPUs to GPUs?

• The GBT cost model in AutoTVM relies on a set of hand-crafted features.
What are the drawbacks of using such a feature set?

• Hyperparameter optimization algorithms often use uncertainty estimates
when choosing candidates. Why is this less important for AutoTVM?

Ansor: Generating High-Performance Tensor
Programs for Deep Learning

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang,
Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, Ion Stoica

Background

● Low-latency execution of Deep Neural Networks (DNN)

● Existing deep learning frameworks map the operators in DNNs to vendor-provided kernel
libraries to achieve high performance
○ Growing diversity of hardware platforms
○ Hard to manually tune these libraries

● High-performance tensor programs are needed

Background

● Template-guided search
○ TVM
○ FlexTensor

❏ Template design is a complicated process
❏ Manual templates only cover limited program structures

● Sequential construction

based search

○ Halide

❏ Fails to include optimizations involving multiple

operators

❏ The cost model trained on complete programs cannot
accurately predict the final performance of incomplete
programs

❏ The fixed order of sequential decisions limits the search
space

❏ Sequential construction based search is not scalable

Challenges - Ansor

Main deficiencies of existing solutions:

● Predefined manually-written templates
● Aggressive pruning and evaluating

incomplete programs
● Limited rules are used to construct the

search space

Search space not large enough!

Challenges:

★ Automatically construct a search space
that is large enough

★ Search efficiently without comparing
incomplete programs

★ Prioritize subgraphs critical to the
end-to-end performance when
optimizing an entire DNN with many
subgraphs

Figure 2: Search strategy comparison

Ansor

● Input: set of DNNs

○ Partitioned into small subgraphs

● Three components:

○ Program Sampler

○ Performance Tuner

○ Task scheduler

Figure 4: System Overview

Program Sampling

● Limited search space
○ Automatically expand the search

space by recursively applying a set
of flexible derivation rules

● Evaluating incomplete programs
○ Randomly sample complete

programs in the search space

Hierarchical representation of the search
space

● Top level: sketch
○ Generate sketches

● Lower level: annotation
○ Randomly annotate the sketches

Table 1: Derivation rules used to generate sketches

Program Sampling

Performance Fine-Tuning

● Evolutionary search

● Learned cost model

Evolutionary
Search

Hardware

Cost Model

promising programssampled programs

profiled data

Performance Fine-Tuning - Evolutionary Search

● Select some programs from the current generation according to certain probabilities

● Apply one of the evolution operations to generate a new program

○ Tile size mutation

○ Parallel mutation

○ Pragma mutation

○ Computation location mutation

○ Node-based crossover

Apply to general tensor programs and handle a search space with complicated dependency

Perform out-of-order modifications to programs, addressing the sequential limitations

Performance Fine-Tuning - Learned Cost Model

● Has great portability since a single model design can be reused for different hardware backends

● Gives relatively accurate estimations of the fitness of programs

● Querying the model is actually orders of magnitudes faster than the actual measurement

Task Scheduler

● Select the subgraphs that are more important to the overall performance

● A task: the process performed to generate high-performance programs for a subgraph

● One unit of time resources: one iteration of selecting a task, generating a batch of promising
programs for the subgraph, and measuring the program on hardware

Task Scheduler

Table 2: Examples of objective functions for multiple neural networks

Objective: minimize the end-to-end cost, i.e.

t = (t1, t2, …, tn), initialized to t = (1, 1, …, 1)

Task Scheduler

Approximate the gradient of f to choose the task

Evaluation - Single Operator Benchmark

Figure 6: Single operator performance benchmark on
a 20- core Intel-Platinum-8269CY

Figure 7: Ablation study of four variants of Ansor on a
convolution operator

Evaluation - Subgraph Benchmark

Figure 8: Subgraph performance benchmark on a 20-core Intel-Platinum-8269CY and an NVIDIA V100

Evaluation - End-to-End Network Benchmark

Figure 9: Network inference performance benchmark on three hardware platforms

Figure 10: Network performance auto-tuning curve

Evaluation - Search Time

Table 3: The number of measurements and wall-clock time used for Ansor to match the
performance of AutoTVM on the Intel CPU (batch size=1)

Evaluation - Cost Model Evaluation

Summary

Ansor: an automated search framework that generates high-performance tensor programs for deep

neural networks

Compared with previous existing search strategies:

● Explores more optimization combinations by sampling programs from a hierarchical

representation of the search space.

● Fine-tunes the sampled programs with evolutionary search and uses a learned cost model to

identify the best programs.

● Utilizes a task scheduler to simultaneously optimize multiple subgraphs in deep neural

networks.

Discussion

1. Besides XGBoost and the TreeGRU used in AutoTVM, is there any other model that might

further improve the performance?

2. As stated in the paper, Ansor currently only supports dense operators. To support sparse

operators that are commonly used in sparse neural networks and graph neural networks, how

can we redesign the search space?

