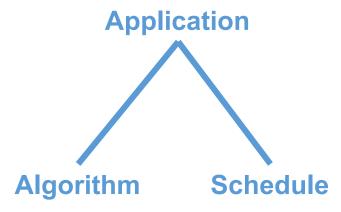
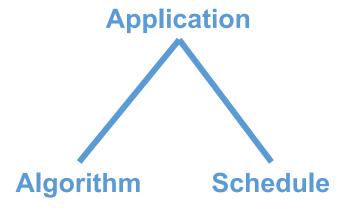
Comparing Halide, TVM, and Ansor

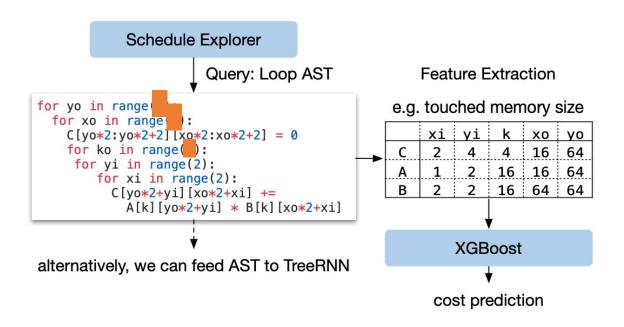


Halide: separate algorithm and schedule, require manual schedules

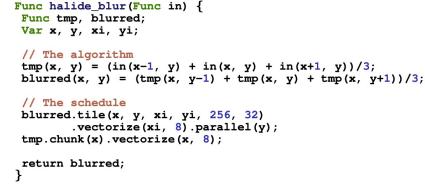
Halide: separate algorithm and schedule, require manual schedules



TVM: require users to specify a schedule space, use ML to explore the space



Halide: separate algorithm and schedule, require manual schedules



TVM: require users to specify a schedule space, use ML to explore the space

Ansor: generate random sketches and annotations, auto-tune parameters

```
Algorithm
              Schedule
     Sketch
                      Annotation
```

for i in range(8): for k in range(512): C[i, k] = max(A[i, k], 0.0) if k < 400 else 0 for i in range(8): for j in range(4): for k o in range(TILE K0): for k i in range(TILE KI): E.rf[...] += C[...] * D[...]for i in range(8): for j in range(4): for k i in range(TILE KI): E[...] += E.rf[...]

Application

Parameters

```
parallel i in range(8):
  ror κ in range(512):
     C[i, k] = \dots
  for i in range(4)
    unroll k o in range(32):
      vectorized k i in range(16)
        E.rf[...] += C[...] " [...]
parallel i in range(8):
 ror = range(4):
    unroll k i in range(16)
      E| . . . ] += E . rr | . . . |
```


Recap: An Overview of Deep Learning Systems

Automatic Differentiation

Graph-Level Optimization

Parallelization / Distributed Training

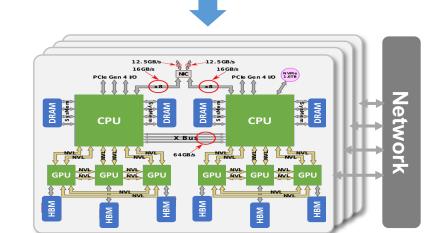
Kernel Generation

Memory Optimization

Week 6: Data, Model, Pipeline Parallelism

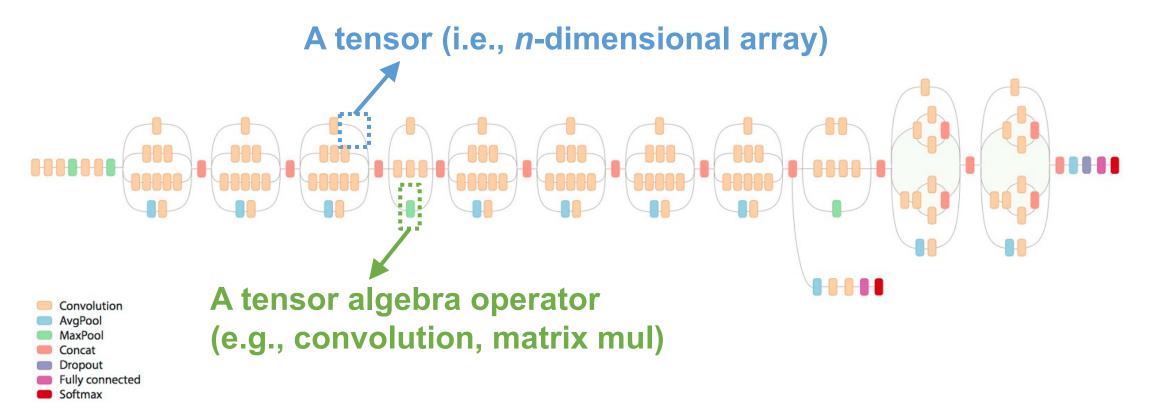
Week 4: Halide, TVM, Ansor

Week 7: Zero-Redundancy, Tensor Rematerialization



Recap: Deep Neural Network

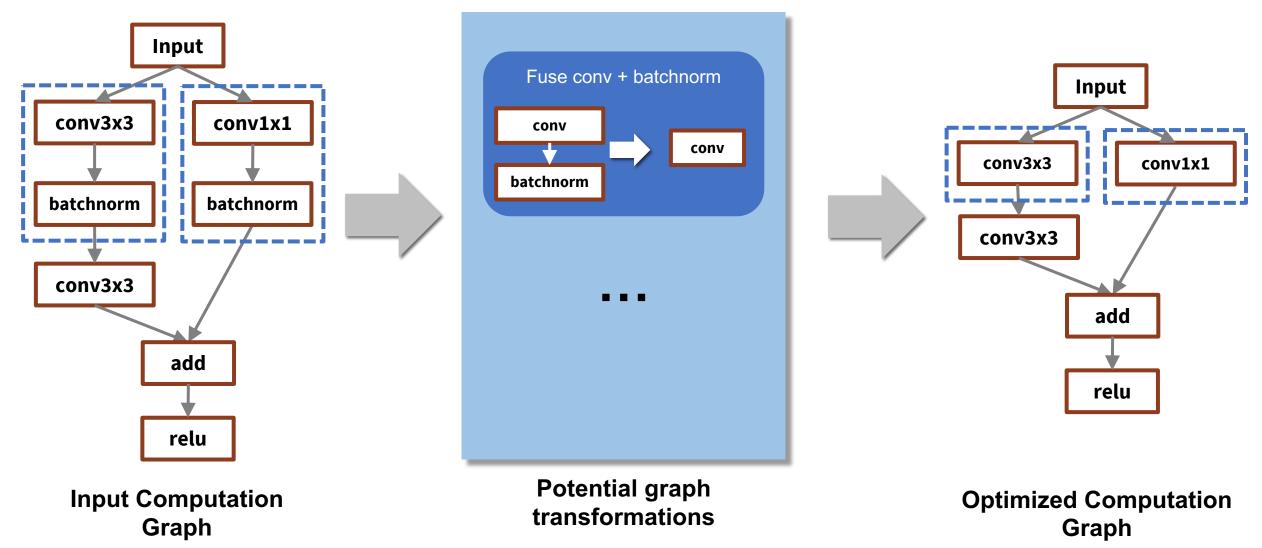
 Collection of simple trainable mathematical units that work together to solve complicated tasks



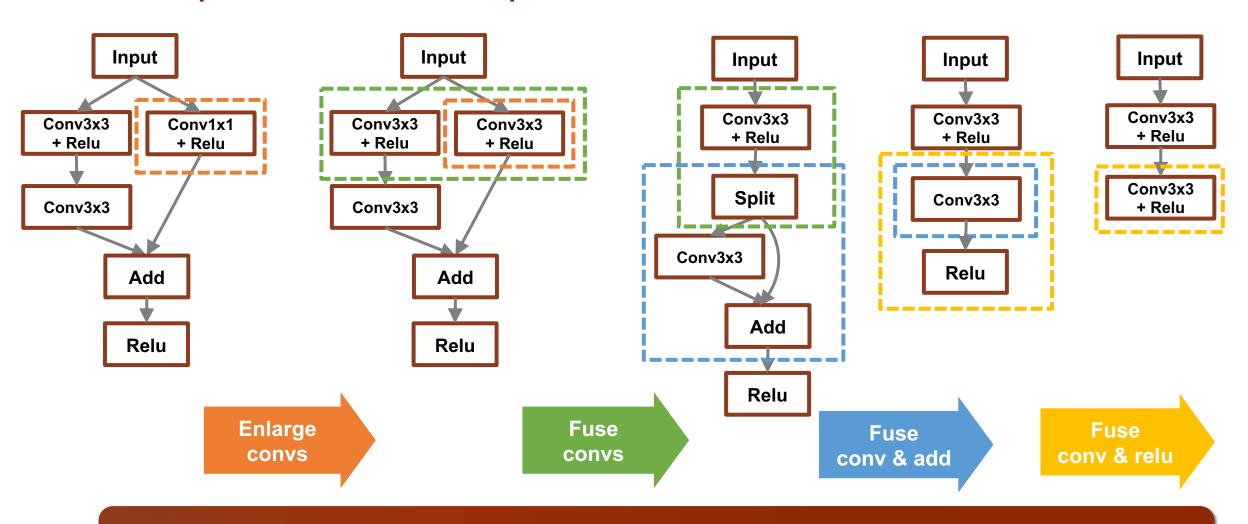
TASO: Optimizing Deep Learning with Automatic Generation of Graph Substitutions

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken

Graph-Level Optimizations

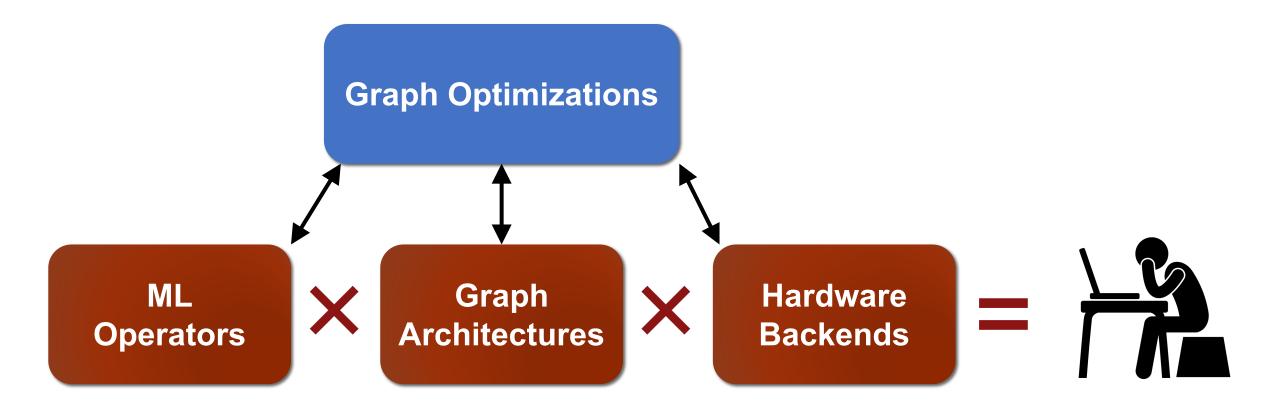


Recap: ResNet Example



The final graph is 30% faster on V100 but 10% slower on K80.

Challenge of Graph Optimizations for ML



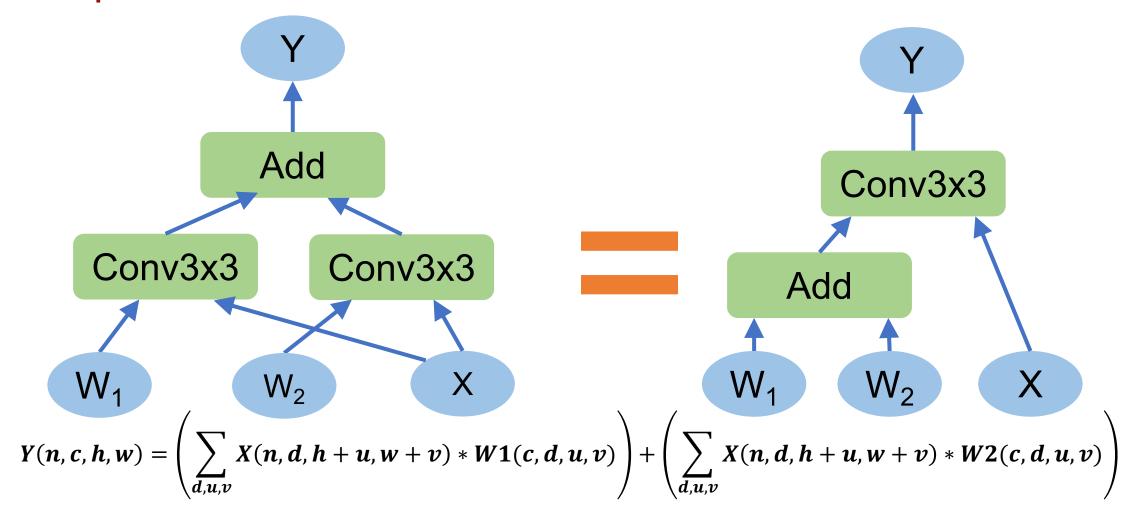
Infeasible to manually design graph optimizations for all cases

TASO: Tensor Algebra SuperOptimizer

Key idea: replace manually-designed graph optimizations with *automated generation and verification* of graph substitutions for tensor algebra

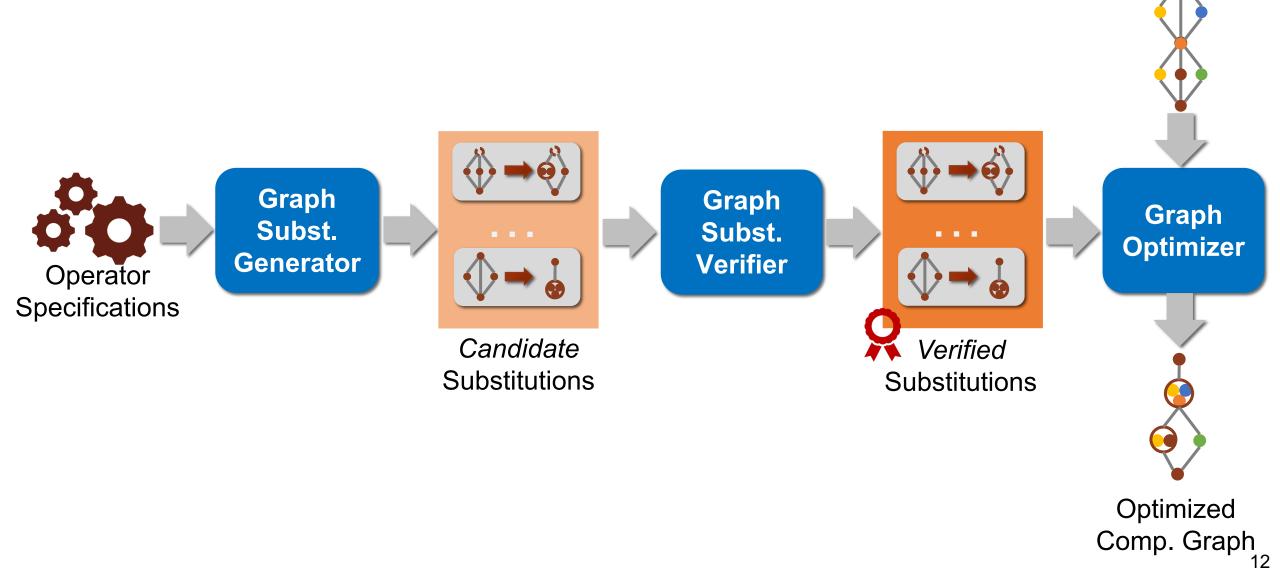
- Less engineering effort: <u>53,000</u> LOC for manual graph optimizations in TensorFlow → <u>1,400</u> LOC in TASO
- Better performance: outperform existing optimizers by up to 3x
- Stronger correctness: formally verify all generated substitutions

Graph Substitution



$$\Leftrightarrow Y(n,c,h,w) = \sum_{d,u,v} X(n,d,h+u,w+v) * (W_1(c,d,u,v) + W_2(c,d,u,v))$$

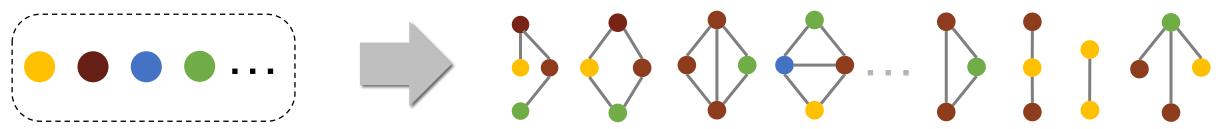
TASO Workflow



Input

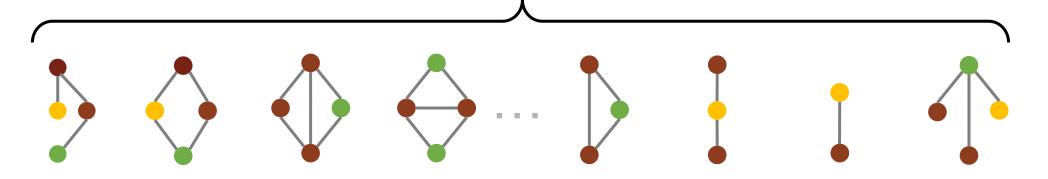
Comp. Graph

Enumerate <u>all possible</u> graphs up to a fixed size using available operators



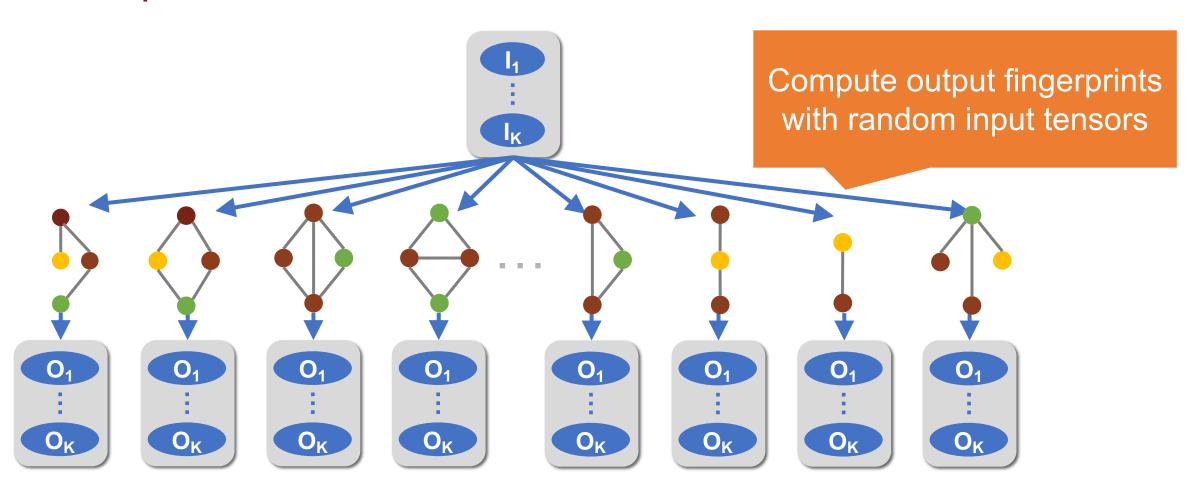
Operators supported by hardware backend

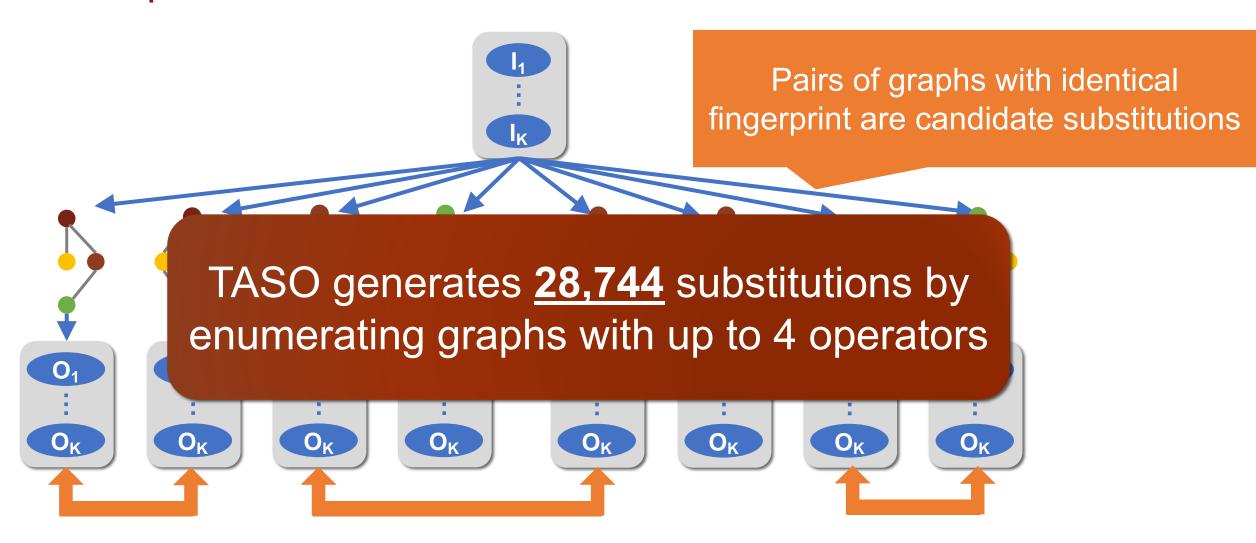
66M graphs with up to **4** operators



A substitution = a pair of equivalent graphs

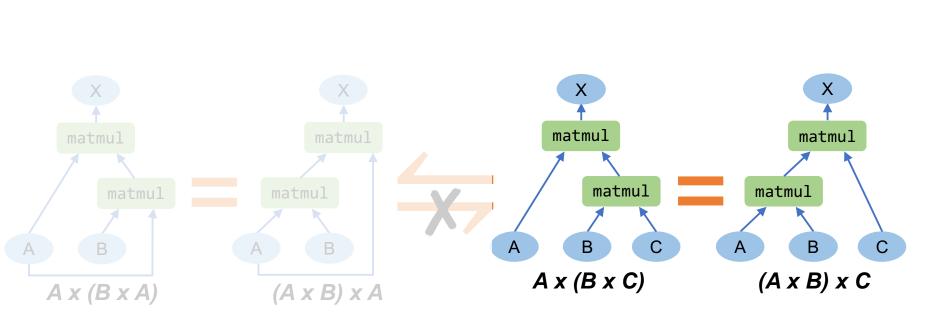
Explicitly considering all pairs does not scale



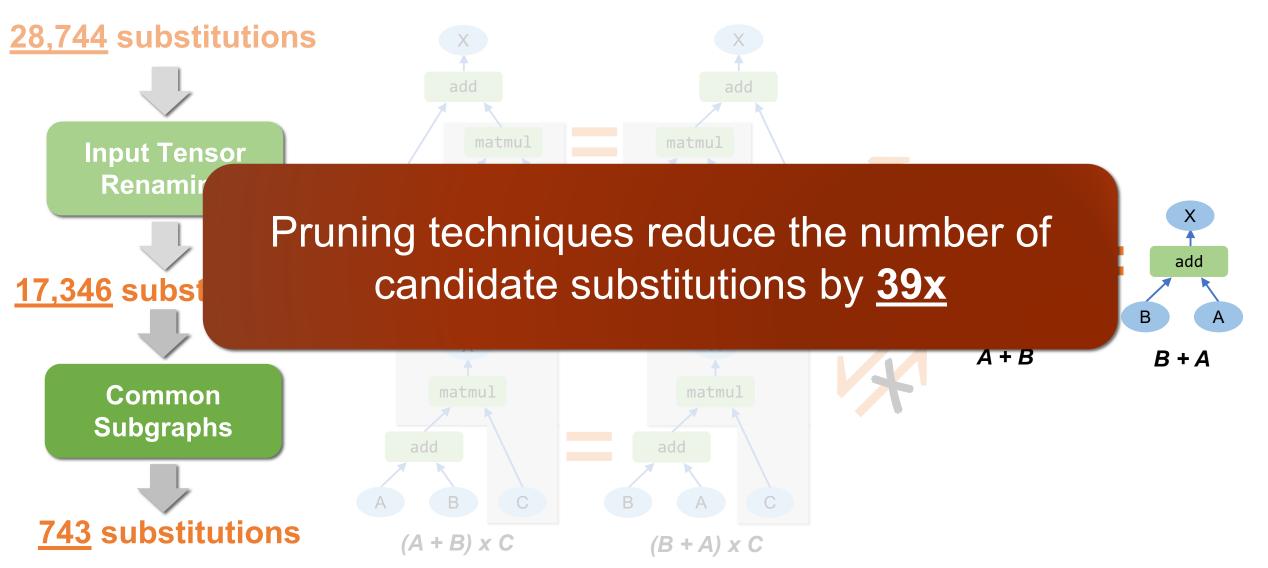


Pruning Redundant Substitutions

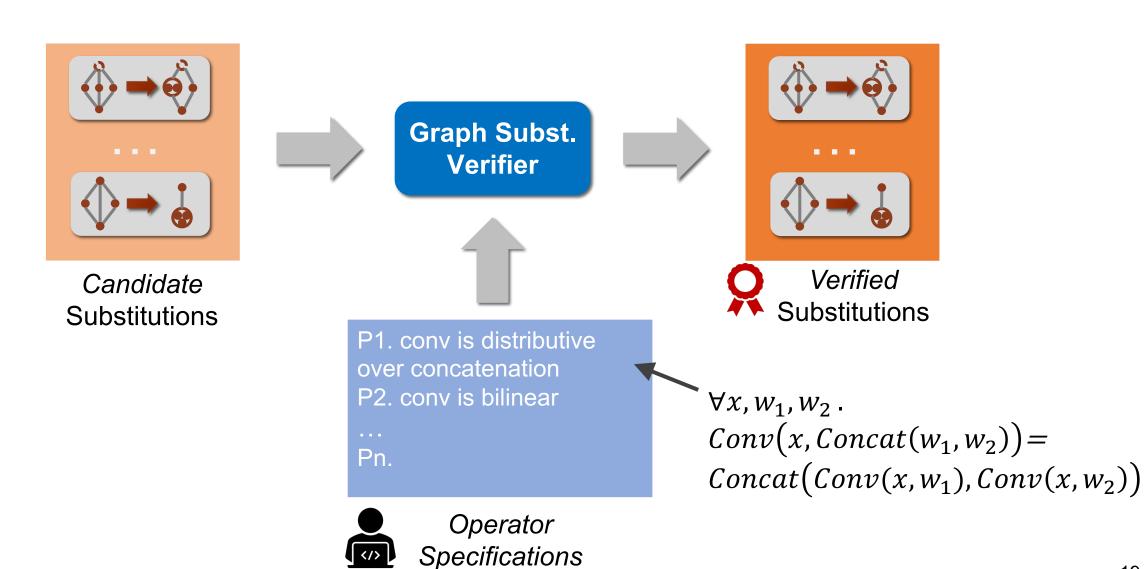
28,744 substitutions



Pruning Redundant Substitutions



Graph Substitution Verifier



Verification Workflow

```
 \forall x, w_1, w_2 . 
 \left( Conv(x, w_1), Conv(x, w_2) \right) 
 = Split \left( Conv(x, Concat(w_1, w_2)) \right)
```

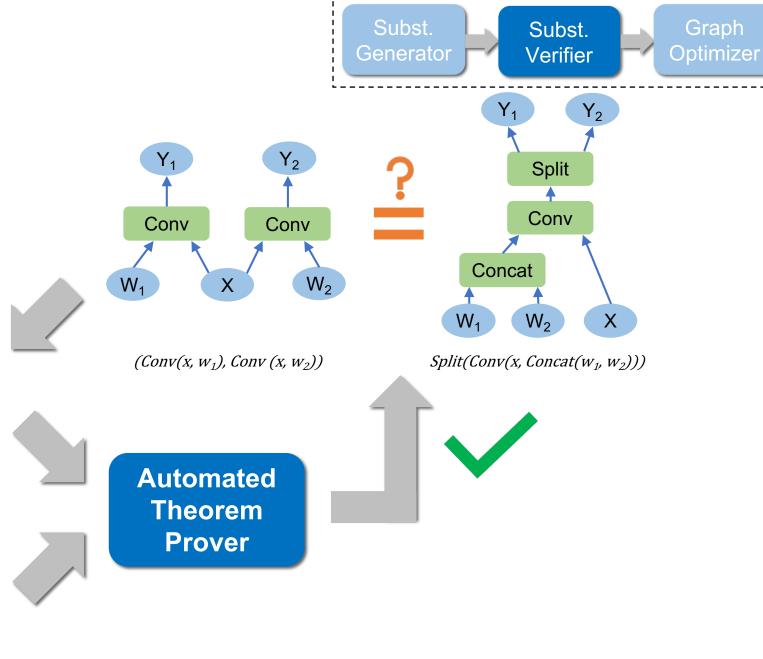
```
P1. \forall x, w_1, w_2.

Conv(x, Concat(w_1, w_2)) =

Concat(Conv(x, w_1), Conv(x, w_2))

P2. ...
```

Operator Specifications



Verification Effort

```
Operator Property
                                                                                                                                             Comment
\forall x, y, z. ewadd(x, \text{ewadd}(y, z)) = \text{ewadd}(\text{ewadd}(x, y), z)
                                                                                                                                              ewadd is associative
\forall x, y. ewadd(x, y) = ewadd(y, x)
                                                                                                                                              ewadd is commutative
\forall x, y, z. \text{ ewmul}(x, \text{ewmul}(y, z)) = \text{ewmul}(\text{ewmul}(x, y), z)
                                                                                                                                              ewmul is associative
\forall x, y. \text{ ewmul}(x, y) = \text{ewmul}(y, x)
                                                                                                                                              ewnul is commutative
\forall x, y, z. \text{ ewmul}(\text{ewadd}(x, y), z) = \text{ewadd}(\text{ewmul}(x, z), \text{ewmul}(y, z))
                                                                                                                                             distributivity
\forall x, y, w. \, \operatorname{smul}(\operatorname{smul}(x, y), w) = \operatorname{smul}(x, \operatorname{smul}(y, w))
                                                                                                                                             smul is associative
\forall x, y, w. smul(ewadd(x, y), w) = ewadd(smul(x, w), smul(y, w))
                                                                                                                                             distributivity
```

TASO generates all <u>743</u> substitutions in 5 minutes, and verifies them against <u>43</u> operator properties in 10 minutes

```
\forall s, p, x, y, w. \text{ smul}(\text{conv}(s, p, A_{\text{none}}, x, y), w) = \text{conv}(s, p, A_{\text{none}}, \text{smul}(x, w), y)
\forall s, p, x, y, z. \text{ conv}(s, p, A_{\text{none}}, x, \text{ewadd}(y, z)) = \text{ewadd}(\text{conv}(s, p, A_{\text{none}}, x, y), \text{conv}(s, p, A_{\text{none}}, x, z))
```

Supporting a new operator requires <u>a few hours</u> of human effort to specify its properties

 $\forall a, x, y.$ split $_0(a,$ concat(a, x, y)) = x

```
Operator specifications in TASO ≈ 1,400 LOC
```

Manual graph optimizations in TensorFlow ≈ <u>53,000</u> LOC

ommutativity
is its own inverse
ommutativity
ommutativity
ommutativity

ommutativity
associative
inear
inear
d transpose

conv is bilinear

conv is bilinear
inear
nvolution kernel

A_{relu} applies relu
mmutativity
conv. with C_{pool}
rnel

split definition

of concatenation ommutativity ommutativity ommutativity

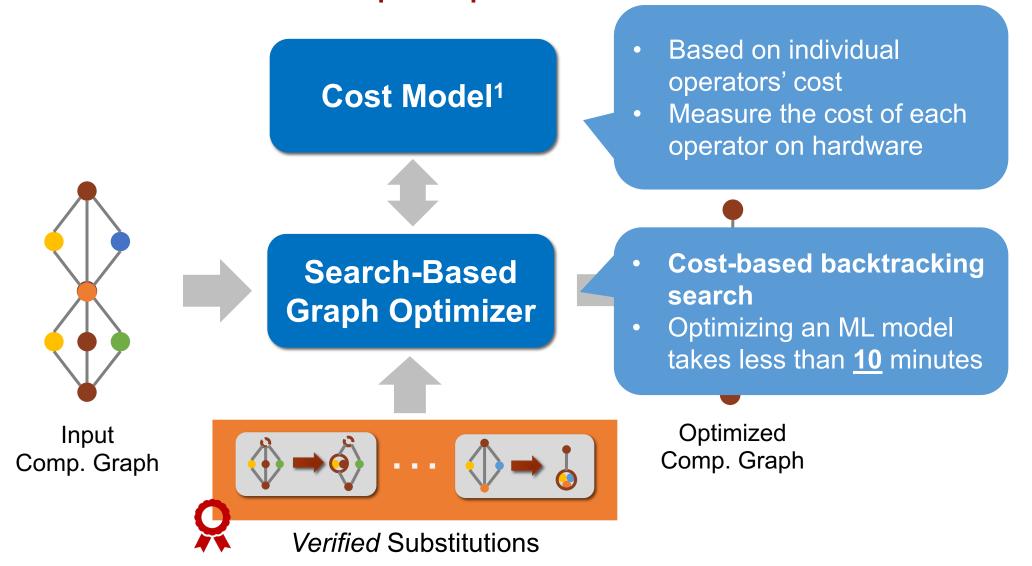
ommutativity ion and transpose ion and matrix mul. ion and matrix mul.

tion and conv.

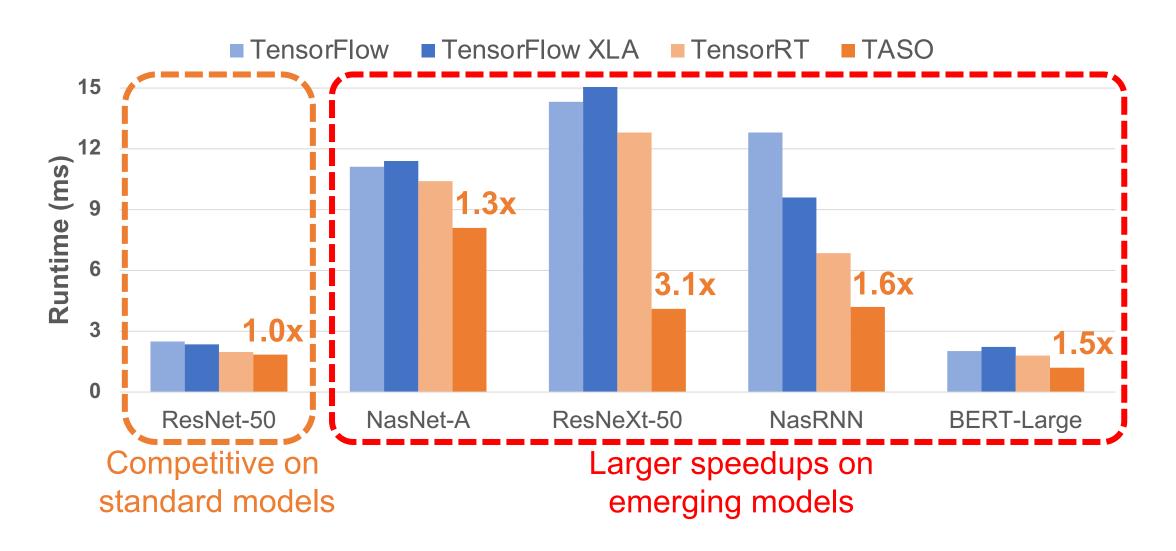
concatenation and conv.

concatenation and pooling concatenation and pooling concatenation and pooling 21

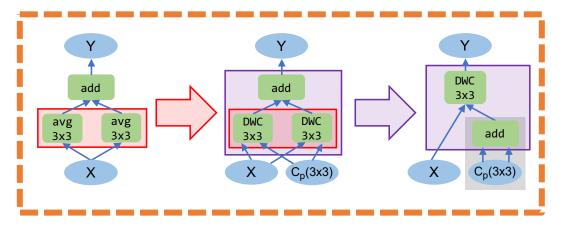
Search-Based Graph Optimizer

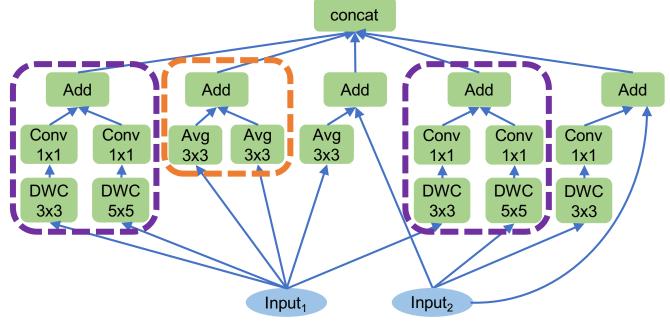


End-to-end Inference Performance (Nvidia V100 GPU)

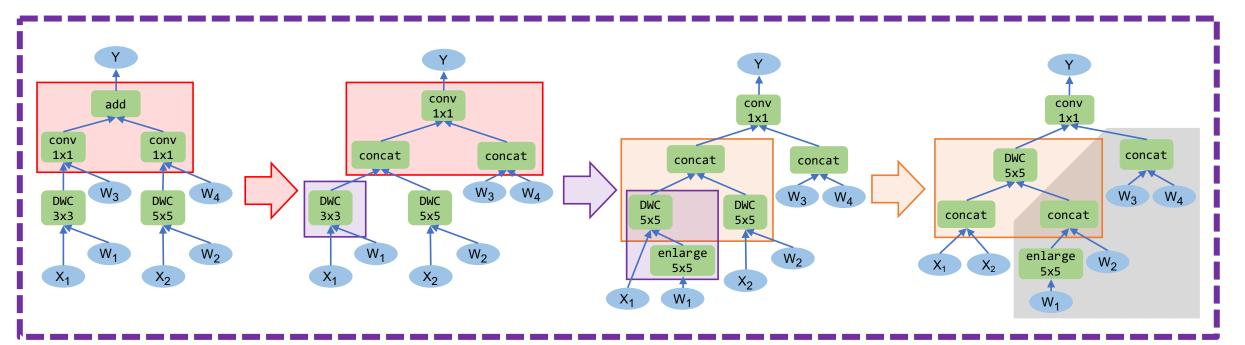


Case Study: NASNet





*DWC: depth-wise convolution



Why TASO is a SuperOptimizer?

What is the difference between optimizer and super-optimizer?

Goal: gradually <u>improve</u> an input program by greedily applying optimizations

Goal: automatically find an optimal program for an input program

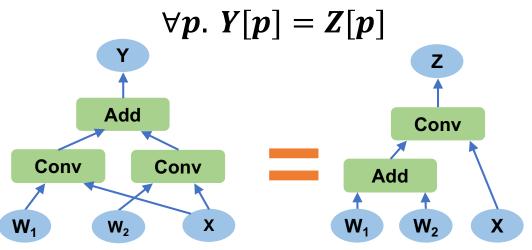
PET:

Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections

Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong, Yuanyong Chen, Zhihao Jia

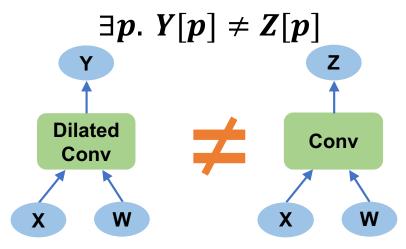
Tsinghua University Carnegie Mellon University Facebook

Motivation: Current Systems Consider only Fully Equivalent Transformations



Fully Equivalent Transformations

- Pro: preserve functionality
- Con: miss optimization opportunities



Partially Equivalent Transformations

- Pro: better performance
 - Faster ML operators
 - More efficient tensor layouts
 - Hardware-specific optimizations
- Con: potential accuracy loss

Motivation: Current Systems Consider only Fully Equivalent Transformations

$$\forall p. \ Y[p] = Z[p]$$

$$\exists p. \ Y[p] \neq Z[p]$$

Is it possible to exploit partially equivalent transformations to improve performance while preserving equivalence?

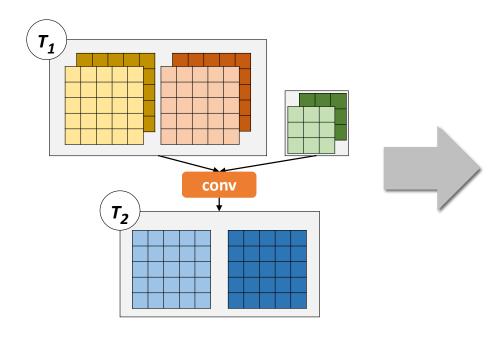
W₁

Con: miss optimization opportunities

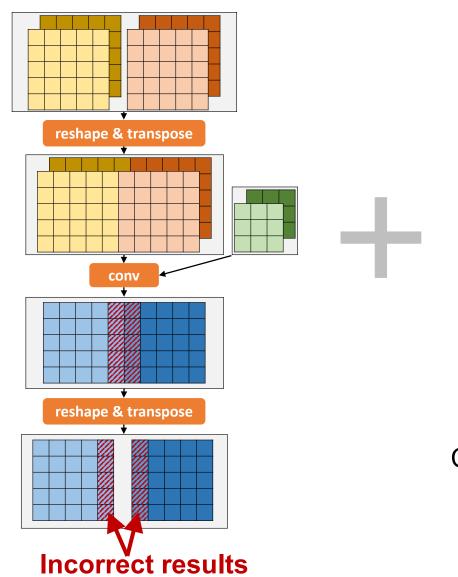
Partially Equivalent Transformations

- Faster ML operators
- More efficient tensor layouts
- Hardware-specific optimizations
- Con: potential accuracy loss

Motivating Example



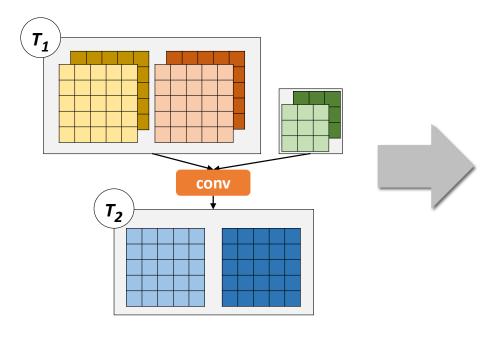
Input Program



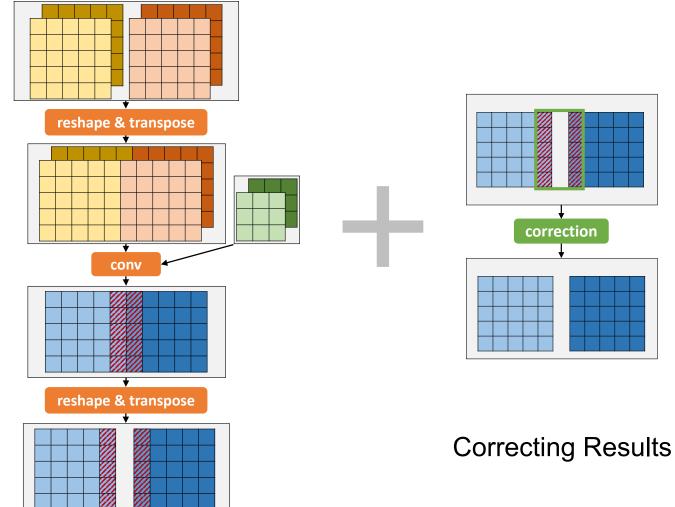
correction

Partially Equivalent Transformation

Motivating Example



Input Program

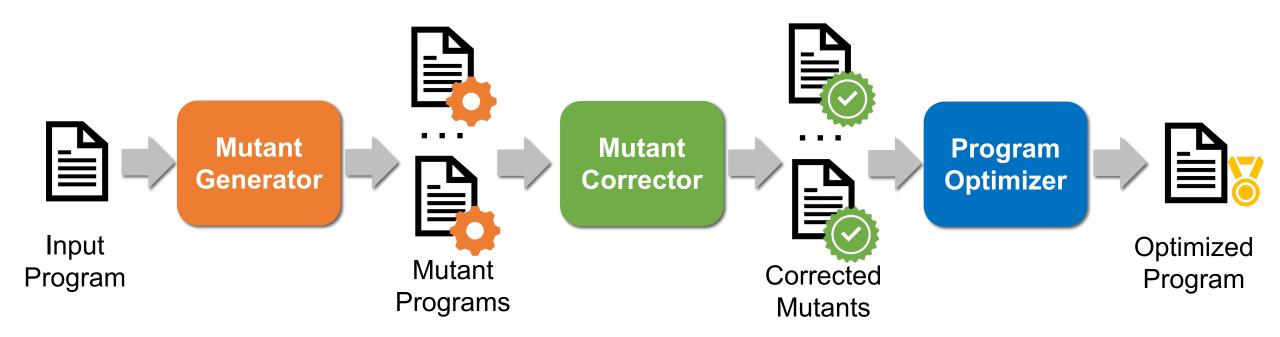


- Transformation and correction lead to <u>1.2x</u> speedup for ResNet-18
- Correction preserves end-to-end equivalence

PET

- First tensor program optimizer with partially equivalent transformations
- Larger optimization space by combining fully and partially equivalent transformations
- Better performance: outperform existing optimizers by up to 2.5x
- Correctness: automated corrections to preserve end-to-end equivalence

PET Overview



Key Challenges

1. How to generate partially equivalent transformations?

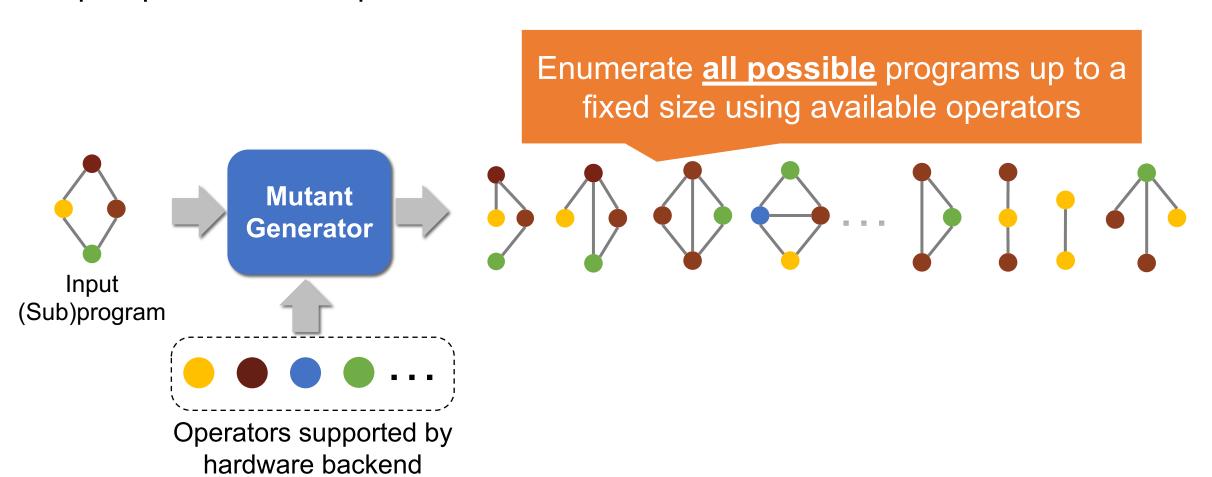
Superoptimization

2. How to correct them?

Multi-linearity of DNN computations

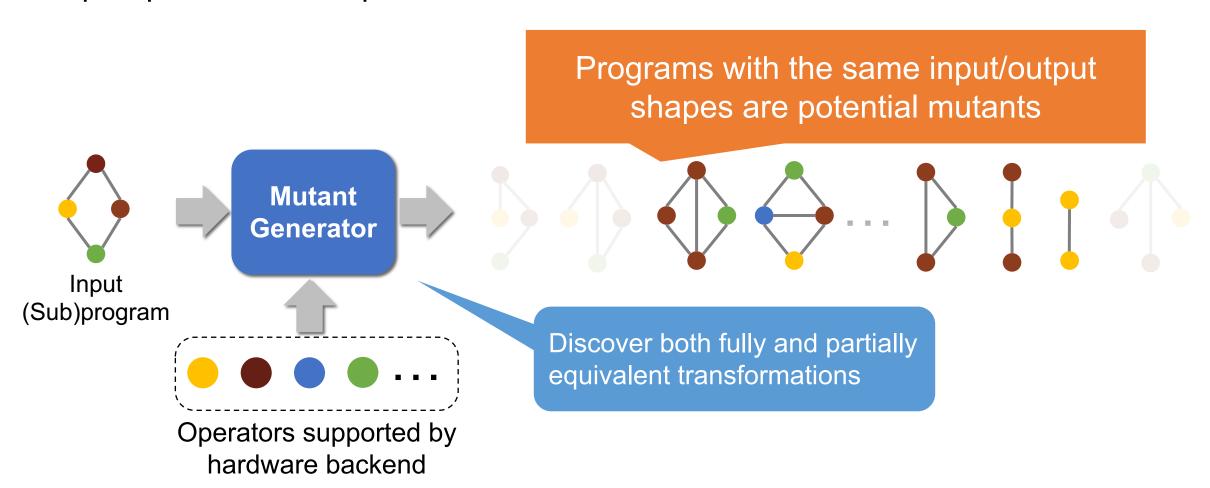
Mutant Generator

Superoptimization adapted from TASO¹



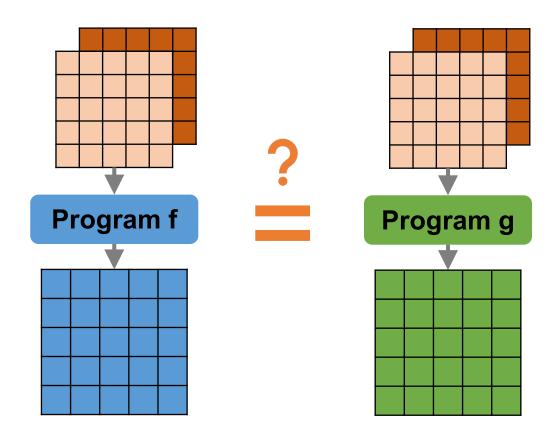
Mutant Generator

Superoptimization adapted from TASO¹



1. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP'19.

Challenges: Examine Transformations

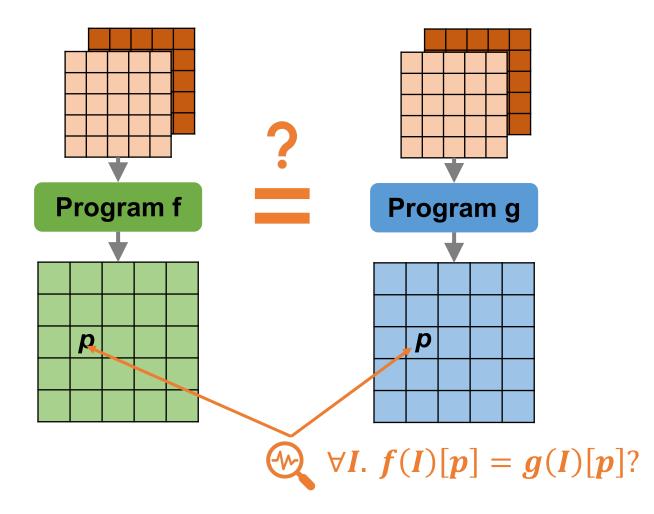


- 1. Which part of the computation is not equivalent?
- 2. How to correct the results?

A Strawman Approach

 Step 1: Explicitly consider all output positions (m positions)

 Step 2: For each position p, examine all possible inputs (n inputs)



Require O(m * n) examinations, but both m and n are too large to explicitly enumerate

Multi-Linear Tensor Program (MLTP)

- A program f is multi-linear if the output is linear to all inputs
 - $f(I_1, ..., X, ..., I_n) + f(I_1, ..., Y, ..., I_n) = f(I_1, ..., X + Y, ..., I_n)$
 - $\alpha \cdot f(I_1, \dots, X, \dots, I_n) = f(I_1, \dots, \alpha \cdot X, \dots, I_n)$
- DNN computation = MLTP + non-linear activations

Majority of the computation

O(m * n) examinations in strawman approach

O(1) examinations in PET's approach

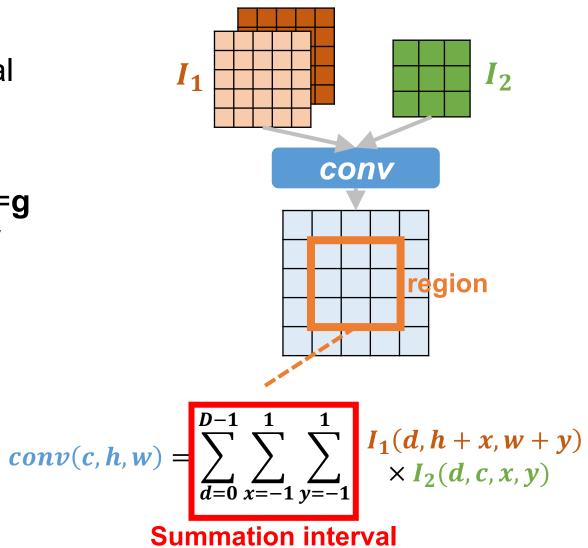
No Need to Enumerate All Output Positions

Group all output positions with an identical summation interval into a region

*Theorem 1: For two MLTPs f and g, if f=g for O(1) positions in a region, then f=g for all positions in the region

Only need to examine O(1) positions for each region.

Complexity: $O(m * n) \rightarrow O(n)$



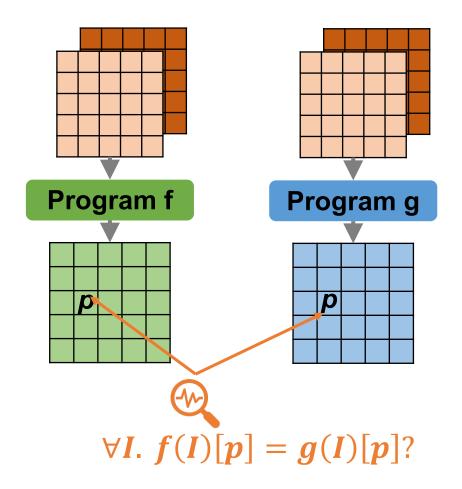
No Need to Consider All Possible Inputs

Examining equivalence for a single position is still challenging

*Theorem 2: If $\exists I$. $f(I)[p] \neq g(I)[p]$, then the probability that **f** and **g** give identical results on t random integer inputs is $(\frac{1}{2^{31}})^t$

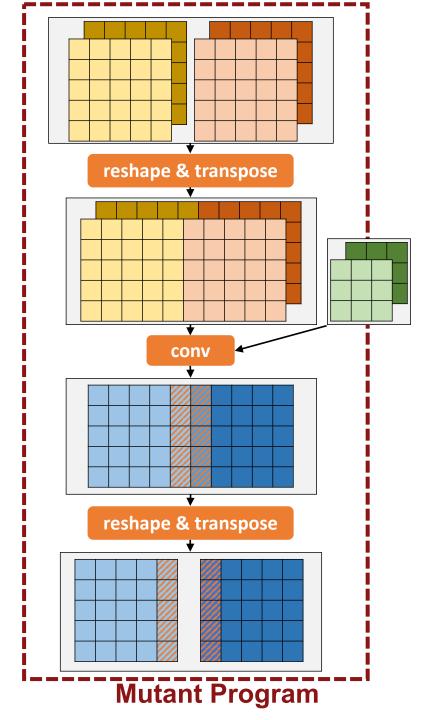
Run *t* random tests for each position *p*

Complexity: $O(n) \rightarrow O(t) = O(1)$



Mutant Corrector

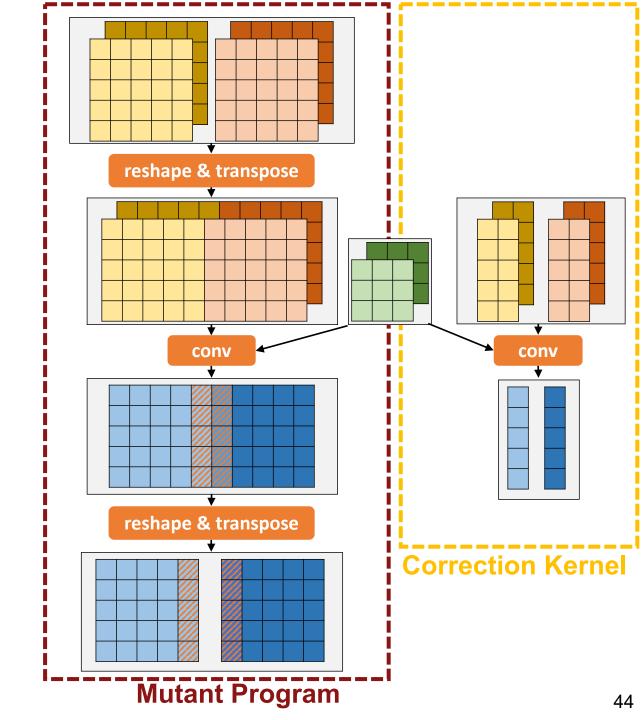
Goal: quickly and efficiently correcting the outputs of a mutant program



Mutant Corrector

Goal: quickly and efficiently correcting the outputs of a mutant program

Step 1: recompute the incorrect outputs using the original program



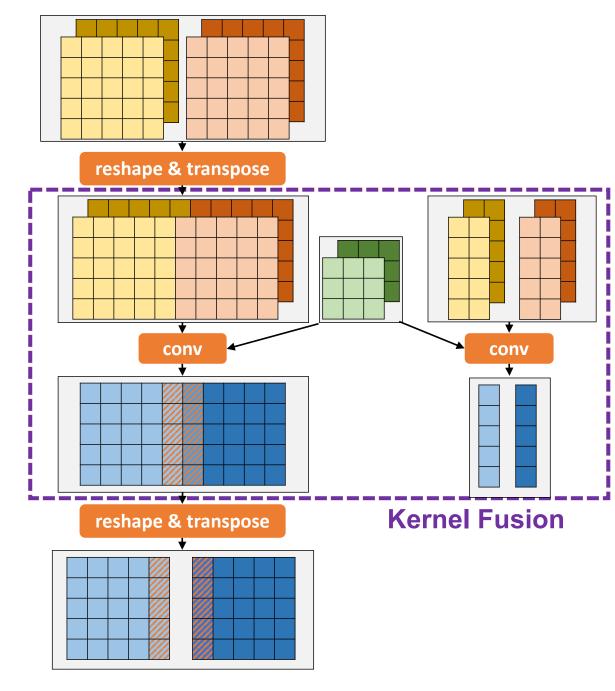
Mutant Corrector

Goal: quickly and efficiently correcting the outputs of a mutant program

Step 1: recompute the incorrect outputs using the original program

Step 2: opportunistically fuse correction kernels with other operators

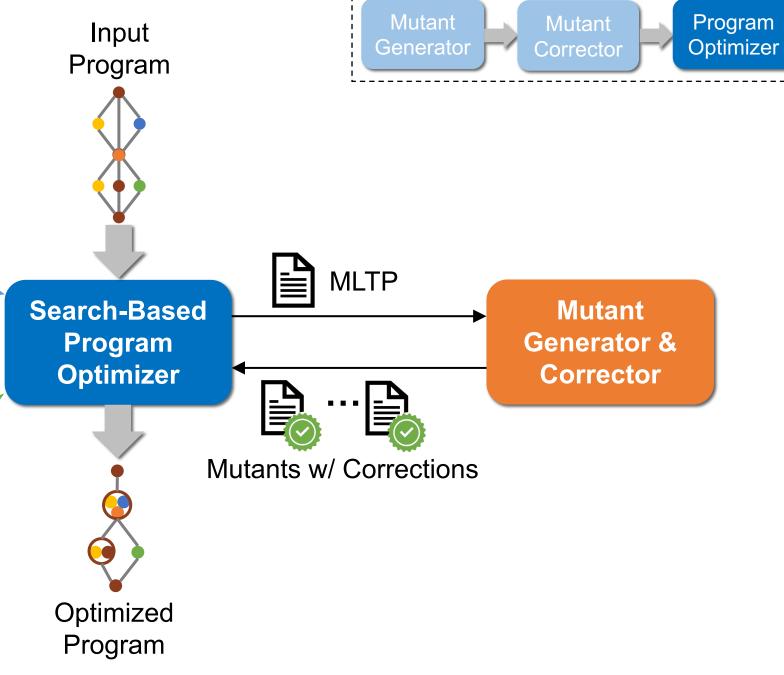
Correction introduces less than 1% overhead



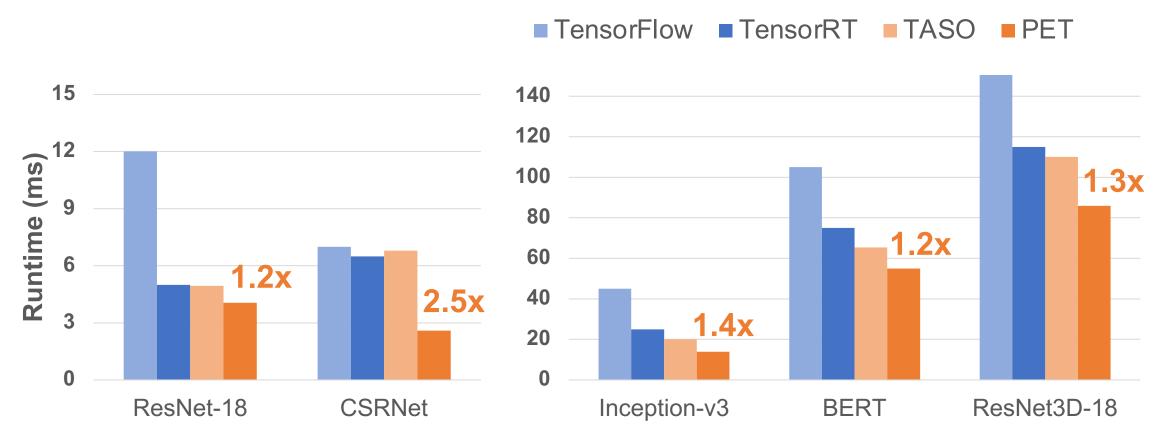
- Beam search
- Optimizing a DNN architecture takes less than <u>30</u> minutes

Other optimizations:

- Operator fusion
- Constant folding
- Redundancy elimination



End-to-end Inference Performance (Nvidia V100 GPU)

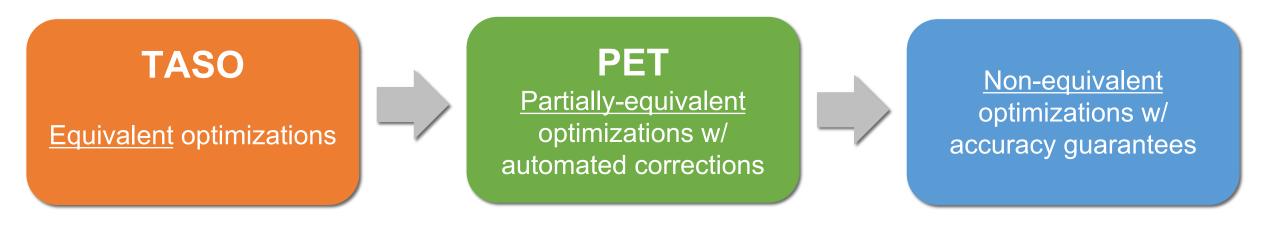


PET outperforms existing optimizers by 1.2-2.5x by combining fully and partially equivalent transformations

PET

- A tensor program optimizer with partially equivalent transformations and automated corrections
- Larger optimization space by combining fully and partially equivalent transformations
- Better performance: outperform existing optimizers by up to 2.5x
- Correctness: automated corrections to preserve end-to-end equivalence

From Equivalent to Non-Equivalent Optimizations for ML



Week 11: Model Pruning, Quantization, Distillation, etc.

Questions to Discuss

- 1. How does PET differ from TASO in generating graph transformations?
- 2. How does PET differ from TASO in verifying/correcting transformations?
- 3. How can we combine graph optimizations with kernel optimizations?