
FlexFlow
Beyond Data and Model Parallelism for Deep Neural Networks

Bowen Chen

Zhihao Jia, Matei Zaharia, Alex Aiken

Overview

Motivation: Find the best parallel strategy given the computation graph and device
topology.

Key Idea: Define a search space and transforms paralleliation optimization problem into a
cost minimization problem.

Previous Work: Data Parallel and Model Parallel

FlexFlow: Beyond Data Parallel and Model Parallel

● Define a larger search space (SOAP) more than data and model parallel.

● A execution simulator that efficiently measure the parallel strategy.

● A search algorithm that find the optimal strategy.

SOAP Search Space

Model the parallelization of an operation by defining how the ouput tensor of is
partitioned.

● Samples -> Data Parallelism
● Operators -> Model Parallelism
● Attributes: partitioning attributes within a sample
● Prameters: partitioning over weights -> Model Parallelism

parallel over Attributes (length)1D-conv 1D-conv

SOAP Search Space in MatMul -> (S, P)

X W = Y

X [W0 | W1] = [Y0 | Y1]

parallel over parameter

(weights)

Task: A computation task needs to be scheduled on a specific device.

SOAP Search Space in 1D-Conv: (S, A, P)

How to determine which configuration runs faster?

Execution Simulator

A straight forward idea: Run an iteration on the hardware to measure exectution time.
(requires 12-27 hours to search for model parallesim strategy on 4 GPUS)

An execution simulator (only 14-40s with fewer compuation resources)

● Operation execution time is independent of tensor data content but size
● The connection (communication) between the device can be model as tensor size

/ bandwith
● Device processess assigned task with FIFO scheduling policy
● Runtime has negligible overhead

Execution Simulator: Task Graph

Construct a task graph given the computation graph, device
layout, and each operators configuration.

op in same layer is assigned to same GPU devices

embedding/Recurrent op apply parition over the Sample

Execution Simulator: Task Graph

add computation task

add communication task

Execution Simulator: Full Simulation

Execution Simulator: Full Simulation

full simulation given the
properties

Execution Optimizer: MCMC sampling

Given a large space of parallelization strategies, and their estimated execution time from
simulator, how to find the best strategy efficiently?

MCMC sampling: obtain samples from a probability distribution where sample with
higher probability distribution is visited more often.

Execution Optimizer: MCMC sampling

Model the p(S) based on the cost from the simulator

Modify a single operator’s configuration of S and genegrate S*

End criteria: With an initial S, the search is done when search budget is exhausted
or no further improvement in half of search time.

Execution Optimizer: MCMC sampling

Which operator’s configuration

is changed and how?

Execution Optimizer: MCMC sampling

batch=2->1

Evaluation

Discussion Problems

● Flexflow only considers equal size partitions in each dimension for load-balance.
Considering the cluster with heterogeneous devices, can we have uneven splits? Will
that leads to any issue?

● How to extend FlexFlow to handle concurrent computation tasks on the same cluster?

● Considering the operator has to do with randomness, i.e. dropout/randperm, is it still
possible to parallelize over the Attribute Dimension?

GShard: Scaling Giant Models with Conditional
Computation and Automatic Sharding

Presenter: Jiajun Wan, Date: 02/21/2022

Authors: Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, Zhifeng Chen

Background

Background

Scale Up

● Make it DEEP, go vertically

● Make it WIDE, go horizontally

Challenges

● Computation Cost
○ Scale efficiently

● Ease of programming
○ Abstraction and lightweight API

● Efficient implementation on parallel devices
○ Extension to compiler such as XLA

GShard

● Conditional computation
○ Activate sub-network on per-input basis
○ Sub-linear cost when scaling
○ Sparsely Gated Mixture-of-Experts (MoE)

● GShard Annotation API
○ Separate model description from partitioning implementation and optimization
○ Compiler extension in XLA for automatic parallelization
○ Special split/partition annotation for tensor
○ Special operator such as Einsum
○ Iterative data-flow analysis to infer sharding for the rest of the tensors

GShard

MoE

● Load balancing
○ Prevent routing to a small number of experts
○ Expert Capacity
○ Overflowed token via residual connection

● Local dispatching for parallel gating
○ Partition batch into local groups
○ Independently in parallel
○ Fractional Expert Capacity
○ Speed up gating function by number of groups

● Auxiliary loss
○ Enforce the load balancing

● Random routing
○ Randomly ignore 2nd expert to conserve overall expert capacity

Gating Function

Gating probability for each expert

Route to 1st expert

Auxiliary loss

Randomly route to 2nd expert

GShard Annotation

XLA SPMD Partitioner For GShard

● Single Program Multiple Data
○ Transforms computation graph into single program to parallel execution
○ Constant compilation time regardless of the number of partitions

Einsum

● Einstein Summation Notation
○ Specify dimensions for input and output tensor
○ “ij, jk -> ik”

● Resharding
○ Repartition in batch dimension

● Accumulating partial results
○ Partitioned along contracting dimensions
○ AllReduce

● Slicing in a loop
○ Limit size of tensor
○ Non-contracting dimensions

Einsum

Resharding

Einsum

Accumulating partial results

Einsum

Slicing in a loop

Massively Multilingual, Massive Machine Translation

● Single neural network translating multiple language pairs simultaneously
○ Between more than hundred languages
○ One trillion T tokens

● Positive transfer
○ Transfer expert knowledge
○ Sharing sub-networks
○ Benefit low-resourced languages

Results

Results

Results

Summary

● Conditional computation

● Sub-linear scaling

● Sparsely Gated Mixture-of-Experts (MoE)

● GShard Annotation API

● Compiler extension in XLA with constant SPMD compile time

● Single neural network translating multiple language

● Best result with 2048 MoE, 36 layers, trained for 4 days

Discussion

1. Why does the average BLEU gain for MoE(512E, 36L) exceed ones with higher capacity, but
shallower MoE(2048E, 12L) in Table 1?

2. Given that there is diminishing return as we keep increasing the number of experts, but
increasing layers adds more training time and not sub-linear cost, what would you do to
improve the best model MoE(2048E, 36L) in the paper?

3. What sharding operator other than Einsum would you implement if you want to add more
operations to GShard?

