
15-849 Paper Discussion

PipeDream

Presenter: Yuxuan Zheng

Feb. 23, 2022

2

3

Executive Summary

1. Pipeline parallelism is another parallelism strategy that overlaps computation and
communication of workers.

2. PipeDream provides a more flexible and efficient pipeline parallelism approach
compared to GPipe.

3. PipeDream combines model parallelism and data parallelism in a pipelined fashion
to partition and schedule the training job into stages over a network of devices.

4. To support pipelining for DNN jobs, PipeDream resolves 3 challenges that
traditional hardware pipeline doesn’t see.

1. Dynamic Programming algorithm to partition workload evenly

2. Static scheduling policy to coordinate forward and backward pass

3. Weight stashing to improve statistical efficiency

5. Able to achieve around 2x higher throughput than GPipe; 1.9x faster than FlexFlow
on AlexNet

4

Background

1. Data parallelism: synchronous all-reduce

1. High communication overhead due to all-to-all communication

2. Need to fit the entire model in a single worker

3. Waste memory due to duplication

2. Model parallelism: split operators to different workers

1. Under-utilize compute resources

2. Programmer needs to decide how to partition the model

3. Hybrid intra-batch parallelism

4. Pipeline parallelism: inter-batch

1. Try to find optimization opportunity between mini-batch iterations of a training loop

5

Background

Traditional Hardware Pipeline

6

Problem of Model Parallelism and GPipe

Idle device

7

Problem of GPipe

1. Assumes a partitioned model as input

1. No auto-partition algorithm

2. Splits a mini-batch into micro-batches

3. May suffer from reduced hardware
efficiency due to re-computation
overheads and frequent pipeline flushes

8

Main Idea of PipeDream

1. Partition the layers of a DNN model into multiple stages

1. Each stage has a consecutive set of layers

2. Each stage is distributed to a worker (GPU, etc.)

2. Multiple mini-batches are fed into the stages one after another

3. Each worker can choose to run:

1. The forward pass given the activation from the
previous stage

2. The backward pass given the gradient from the stage
after itself

4. Once the computation is done, the worker sends the result
(activation or gradient) to the next worker who should process it

5. At the same time, the worker starts to compute the next mini-
batch (either forward or backward)

9

Main Idea of PipeDream

10

Why Pipelining Is Good?

1. Less communication than data parallelism

1. No need to aggregate and broadcast the
gradients

2. Only communicates a subset of
gradients/activations to only a single
worker

3. All-to-all -> peer-to-peer

2. Overlaps computation and communication

1. Communication of current results
overlaps next minibatch's computation

2. Because communication and
computation have no dependency

11

Challenges

1. Partition DNN layers into the stages evenly

1. Throughput depends on the slowest stage in
pipeline

2. Allow a stage to be replicated (data parallelism)

3. Has optimal sub-problem structure -> use DP

2. Schedule forward and backward computation on the same
worker

1. DNN training needs forward and backward passes

2. Workers need to decide what to run and how to
coordinate replicated workers for data parallelism

3. Mismatch between the version of weights used in the
forward and backward pass

1. Fundamental issue due to pipelining

12

Challenge 1: Work/Stage Partition

Profile the training job and find the optimal partition with DP

Goal: Get partitioning of layers,
replication factor, optimal num
of in-flight mini-batches

13

Challenge 1: Work/Stage Partition

Profile the training job and find the optimal partition with DP

Goal: Get partitioning of layers,
replication factor, optimal num
of in-flight mini-batches

Time of slowest stage in the optimal
pipeline between layers i and j using m
workers at device level k

Total time of a stage for a single input
from layer i to j for both forward and
backward passes, replicated over m
workers with bandwidth B_k

comp time at level k-1

comm time of data-parallel

Time of m inputs of comp and
comm overlapped

comm time of activations and gradients of
size a_s between layer s and s+1

14

Challenge 2: Forward/Backward Scheduling

1F1B-RR: static scheduling policy
to run forward and backward
alternatively, and handle stage
replications with round-robin

15

Challenge 3: Effective Training

Weight Stashing

- Maintains multiple versions of the weights,
one for each active mini-batch

- Each stage processes a minibatch using the
latest version of weights available in the
forward pass

- After forward pass, store the weights used
for that minibatch

- The same version of weights is then used to
compute in backward pass

- Only ensure the weights used in
forward/backward pass are the same

- Cannot ensure the weights are the same
across stages (workers)

- Doesn’t increase memory overhead
significantly compared to data-parallel
training

16

Evaluation

17

Evaluation

18

Discussion of PipeDream

• Better partition computational graph
• Profile & DP for “optimal” solution

• Better utilize resources with pipelined mini-
batches

• Overlap computation & communication
• Combine data & model & pipeline

parallelism “naturally”

19

Discussion Questions

1. Do you see any possible improvement of the work/stage partition

algorithm? Especially, consider what factors are not included in the

current DP formulation?

2. Could you discuss the similarities and differences between PipeDream

and Spark-style multi-worker computation?

3. What are some advantages & limitations of the "profile-then-partition"

approach? Is there any improvement potential for the "1F1B-RR"

scheduling?

20

Thank You!

GPipe: Efficient Training of Giant Neural Networks
using Pipeline Parallelism

Yanping Huang, et al.
NIPS 2019

Presenter: Weizheng Xu
Feb.23. , 2022

1

Introduction: Becoming more larger

[1] https://www.synopsys.com/designware-ip/technical-bulletin/building-efficient-deep-learning-dwtb_q318.html

• Bring remarkable quality improvements to several fields
- Trend: accuracy improvements on ImageNet with increase in model capacity
- Similar phenomenon be overserved in context of natural language processing

2

[1] https://www.microsoft.com/en-us/research/blog/pipedream-a-more-effective-way-to-train-deep-neural-networks-using-pipeline-parallelism/

Introduction: Becoming more larger

• Practical challenges with larger models
- HW constraints (memory limitation, communication bandwidth on accelerator)
- Dividing larger models into partitions and assignment of different partitions to different accelerators[1]

35x bigger models à 6% accuracy increase
3

[2] https://arxiv.org/pdf/1809.02839.pdf

Introduction: Becoming more larger

• Model parallelism
- Hard to design and implement efficient model parallelism algorithm[2]

- Using multiple GPUs, Each GPU is responsible for weight updates of assigned model layers
- Architecture and task-specific and Increasing demand for reliable and flexible infrastructure

4

Introduction: Model Parallelism

q Scaling arbitrary DNN architecture by partitioning models
q Layers can be partitioned into cells and each cell is then placed on separate accelerator.

§ (a) Sequential partitioning
§ (b) Naïve Model Parallelism (severely under-utilized)

Naïve Model Parallelism

F1 waits for outputs of F0

Only one accelerator is active when the model is distributed across the accelerators
Resource is severely under-utilized! 5

GPipe: Enhancing efficiency with pipeline parallelism

Flexible library for efficient training of large neural networks
§ GPipe partitions the network into K cells and places the k-th cell on the k-th accelerator.
§ Forward: Dividing a minibatch of size N into M equal micro-batches (pipelined through K accelerators)
§ Backward: Gradients for each micro-batch are computed on same model parameters used for forward
§ Update: To keep consistency, gradients are updated at the end after all micro-batches are processed

Naive model parallelism

Pipeline parallelism Consistent trainingMicro-batch 6

• Pipeline parallelism
- Amount of overlapped processing increases, allowing same amount of data to be processed in less time[3]
- As size of Micro-batch gets smaller, next GPU can start working faster (idle time gradually decreases)
- However, size is too small, efficiency is reduced (Not enough to compute workload for GPU)

[3] https://www.kakaobrain.com/blog/66

GPipe: Enhancing efficiency with pipeline parallelism

7

GPipe: Performance optimization

• Re-materialization: to reduce activation memory requirement
- Forward, each accelerator only stores output activations at the partition boundaries

- Only hidden layers connecting separate models to each other is placed in memory
- Backward, the k-th accelerator recompute forward function

8

GPipe: Performance optimization

• Re-materialization: to reduce activation memory requirement
- Forward, each accelerator only stores output activations at the partition boundaries
- Backward, the k-th accelerator recompute forward function
- Bubble overhead: some idle time per accelerator

K
ac

ce
le

ra
to

r

M micro-batches

Bubble time is amortized over number of micro-steps
(to be negligible when M ≥4*K) 9

GPipe: Performance analysis --- Scalability

• Performance with two different types of models: AmoebaNet
- AmoebaNet (convolutional model), Transformer (sequence-to-sequence model)
- Both re-materialization and pipeline parallelism to benefit memory utilization
- Biggest model size GPipe can support under reasonably large input size
- 25x more memory than what is possible w/o GPipe

10

GPipe: Performance analysis --- Scalability

• Performance with two different types of models: Transformer
- AmoebaNet (convolutional model), Transformer (sequence-to-sequence model)
- Both re-materialization and pipeline parallelism to benefit memory utilization
- Biggest model size GPipe can support under reasonably large input size
- 298x more memory than what is possible w/o GPipe

11

GPipe: Performance analysis --- Efficiency

• Normalized training throughput of AmoebaNet and Transformer
o In Transformer, for M=32 (# micro-batch per minibatch), the speed up from k=2 to k=8 is 3.5x. The

improvement is almost linear. (k= #partitions)
o In AmoebaNet, the improvement is sublinear due to imbalanced computation distribution.

12

GPipe: Performance analysis --- Overhead Breakdown

• There are some overheads…

Recompute introduces performance overhead in exchange for
smaller memory footprint 13

GPipe: Case Study

• Image classification
- AmoebaNet with scaled input image size (480x480)
- Single model: 4 partitions, 84.4$ (top-1), 97% (top-5)
- Effectiveness of giant convolution networks on other image datasets through transfer learning

14

GPipe: Case Study

• Massive Massively Multilingual Machine Translation
- Scaled transformer: (1) depth by increasing number of layers, (2) width by increasing hidden dimensions
- 1.3B wide model with (12,16384,32), 1.3B deep model (24,8192,16)
- Quality of both model is similar, deeper model outperforms by huge margins on low-resource languages

(suggesting that increasing model depth might be better for generalization)

*BLEU (Bilingual Evaluation Understudy) score
15

• Training time is reduced by parallelism and pipelining to minimize bubble time.
• Activation memory requirement is reduced by micro-batching and re-computing the

forward activations.
• Gpipe with 8 partitions of Nvidia 8GB GPU each, can support a AmoebaNet-D of up to

1.5B parameters.
• Training throughput can be increased by tuning #partitions and #micro-batches.
• While powerful and giant models can be supported, the overheads are not negligible.

16

GPipe: Conclusion

Questions to Discuss?

• Memory requirements and computation flops of different layers are often quite imbalanced
(although transformer is a relatively balanced model), how could we automatically find ”optimal”
partitioning (the scheduling algorithm)?

• How possible node failures are taken into account?

• Gpipe assumes that a single layer is able to fit the memory requirements of a single accelerator.
How to combine the partitioning of intra-layer and inter-layer and use the resource efficiently?

17

