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Executive Summary

1. Pipeline parallelism is another parallelism strategy that overlaps computation and
communication of workers.

2. PipeDream provides a more flexible and efficient pipeline parallelism approach
compared to GPipe.

3. PipeDream combines model parallelism and data parallelism in a pipelined fashion
to partition and schedule the training job into stages over a network of devices.

4. To support pipelining for DNN jobs, PipeDream resolves 3 challenges that
traditional hardware pipeline doesn't see.

1. Dynamic Programming algorithm to partition workload evenly
2. Static scheduling policy to coordinate forward and backward pass
3. Weight stashing to improve statistical efficiency

5. Able to achieve around 2x higher throughput than GPipe; 1.9x faster than FlexFlow
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Background

1. Data parallelism: synchronous all-reduce
1. High communication overhead due to all-to-all communication
2. Need to fit the entire model in a single worker
3. Waste memory due to duplication

2. Model parallelism: split operators to different workers
1. Under-utilize compute resources
2. Programmer needs to decide how to partition the model

3. Hybrid intra-batch parallelism

Pipeline parallelism: inter-batch
1. Tryto find optimization opportunity between mini-batch iterations of a training loop
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Background

Traditional Hardware Pipeline

PIC32MX Pipelined Instruction Execution
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Problem of Model Parallelism and GPipe

Idle device
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Figure 3: GPipe’s inter-batch parallelism approach. Fre-

quent pipeline flushes lead to increased idle time.
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Problem of GPipe

1. Assumes a partitioned model as input
1. No auto-partition algorithm
2. Splits a mini-batch into micro-batches

May suffer from reduced hardware
efficiency due to re-computation
overheads and frequent pipeline flushes

All inputs use weights from last flush Pipeline flush:
add gradients

Worker 1 3 |&)
Worker 2 : 1122
Worker 3 4 1(1(2(2(3|3
Worker 4 M1|1]|2]|2)|3[3([4(4

Time
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Figure 3: GPipe’s inter-batch parallelism approach. Fre-
quent pipeline flushes lead to increased idle time.
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Main Idea of PipeDream

1. Partition the layers of a DNN model into multiple stages
1. Each stage has a consecutive set of layers
2. Each stage is distributed to a worker (GPU, etc.) Worker 1

Multiple mini-batches are fed into the stages one after another ::::: i
Each worker can choose to run: Worker 4 §
1. The forward pass given the activation from the Startup State ' Steady State
previous stage Time >
2. The backward pass given the gradient from the stage S
after itself Figure 4: An example PipeDream pipeline with 4 workers,

showing startup and steady states. In this example, the back-

4. Once the computation is done, the worker sends the result -
ward pass takes twice as long as the forward pass.

(activation or gradient) to the next worker who should process it
5. Atthe same time, the worker starts to compute the next mini-
batch (either forward or backward)
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Worker 1 - All inputs use weights from last flush Pipeline flush:

4 add gradients
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Figure 2: Model parallel training with 4 workers. Numbers
indicate batch ID, and backward passes takes twice as long as . . .
forward passes. For simplicity, we assume that communicat- Figure 3: GPipe’s inter-batch parallelism approach. Fre-
ing activations/gradients across workers has no overhead. quent pipeline flushes lead to increased idle time.
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Figure 4: An example PipeDream pipeline with 4 workers, Carnegie
showing startup and steady states. In this example, the back- M 11
ward pass takes twice as long as the forward pass. elon
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Why Pipelining Is Good?

1. Less communication than data parallelism

1. No need to aggregate and broadcast the
gradients

2. Only communicates a subset of
gradients/activations to only a single
worker

3. All-to-all -> peer-to-peer
2. Overlaps computation and communication

1. Communication of current results
overlaps next minibatch's computation

2. Because communication and
computation have no dependency

10

Worker 1 Worker 2 Worker 3 Worker 4

Time

| Forward Work

Background Communication
(Activations & Gradients)



Challenges

1. Partition DNN layers into the stages evenly

1. Throughput depends on the slowest stage in
pipeline

2. Allow a stage to be replicated (data parallelism)
3. Has optimal sub-problem structure -> use DP

2. Schedule forward and backward computation on the same
worker

1. DNN training needs forward and backward passes

2. Workers need to decide what to run and how to
coordinate replicated workers for data parallelism

3. Mismatch between the version of weights used in the
forward and backward pass

1. Fundamental issue due to pipelining

11
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Figure 4: An example PipeDream pipeline with 4 workers,
showing startup and steady states. In this example, the back-
ward pass takes twice as long as the forward pass.
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Challenge 1: Work/Stage Partition

Profile the training job and find the optimal partition with DP

Goal: Get partitioning of layers,
replication factor, optimal num
of in-flight mini-batches

o
|¢=
id
o

Figure 7: An example 2-level hardware topology. Solid green
boxes represent GPUs. Each server (dashed yellow boxes)
has 4 GPUs connected internally by links of bandwidth By;
each server is connected by links of bandwidth B;. In real
systems, B; > By. Figure best seen in color.
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Goal: Get partitioning of layers,

Challenge 1 : Work/Stage Pa rtition rep“cation factor, 0ptima| num
of in-flight mini-batches

Profile the training job and find the optimal partition with DP find AL(0 » N, myp)
Total time of a stage for a single input Ak—l i— i.m .
from layer i to j for both forwardand ~ k ( J’. k-1 ) comp time at level k-1
backward passes, replicated over m T (i - j, m) = — max 2(m - 1) ZJ - IWll
workers with bandwidth B_k m [=i comm time of data-parallel

g

Time of m inputs of comp and
comm overlapped

comm time of activations and gradients of

Time of slowest stage in the optimal size a_s between layer s and s+1

pipeline between layers i and j using m
workers at device level k

Ak(i > s,m—m’)

Ak(i — j,m) = min min max\ 2as/By «
I<s<jl<m'<m

Tf(s+1 > j,m’)
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Challenge 2: Forward/Backward Scheduling

N
\

Replicated Worker 1
H Worker 2
1F1B-RR: static scheduling policy

B: 08
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to run forward and backward o 1 n ; n : n n H n .

. Time
alternatively, and handle stage
replications Wlth round-robin I Forward Pass Backward Pass NN ldle

Figure 8: An example PipeDream pipeline with 3 workers
and 2 stages. We assume that forward and backward passes
in the first stage take two time units, while forward and
backward passes in the second stage take only a single time
unit. The first stage in this pipeline is replicated twice so that
each stage sustains roughly the same throughput. Here, we
assume that forward and backward passes take equal time,
but this is not a requirement of our approach.
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Challenge 3: Effective Training

Weight Stashing

- Maintains multiple versions of the weights,
one for each active mini-batch

- Each stage processes a minibatch using the
latest version of weights available in the
forward pass

- After forward pass, store the weights used
for that minibatch

- The same version of weights is then used to
compute in backward pass

- Only ensure the weights used in
forward/backward pass are the same

- Cannot ensure the weights are the same
across stages (workers)

- Doesn'tincrease memory overhead
significantly compared to data-parallel
training

Per-worker buffers:
Weight versions

[ [

Worker 4 §§§ n

Time

— Backward
Pass

Forward
Pass

NN 1dle

Figure 9: Weight stashing as minibatch 5 flows across stages.
Arrows point to weight versions used for forward and back-
ward passes for minibatch 5 at the first and third stages.
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Evaluation
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Figure 10: Accuracy vs. time for VGG-16 using 16 GPUs. Figure 14: Comparison of PipeDream (red) to non-DP intra-
Each circle or triangle represents two epochs of training. batch techniques for 4-GPU configurations on Cluster-A.
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Evaluation
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Figure 17: Bytes communicated per training sample by data- _ R
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Discussion of PipeDream

Worker 1 Worker 2 Worker3  Worker 4

* Better partition computational graph
* Profile & DP for “optimal” solution
» Better utilize resources with pipelined mini-
batches
 Overlap computation & communication
e Combine data & model & pipeline
parallelism “naturally”

N 7 N7 N7 N7
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Discussion Questions

1. Do you see any possible improvement of the work/stage partition
algorithm? Especially, consider what factors are not included in the
current DP formulation?

2. Could you discuss the similarities and differences between PipeDream
and Spark-style multi-worker computation?

3. What are some advantages & limitations of the "profile-then-partition"
approach? Is there any improvement potential for the "1F1B-RR"
scheduling?
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Thank You!
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GPipe: Efficient Training of Giant Neural Networks
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Introduction: Becoming more larger

* Bring remarkable quality improvements to several fields

- Trend: accuracy improvements on ImageNet with increase in model capacity

- Similar phenomenon be overserved in context of natural language processing
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Introduction: Becoming more larger

* Practical challenges with larger models

- HW constraints (memory limitation, communication bandwidth on accelerator)

- Dividing larger models into partitions and assignment of different partitions to different acceleratorsl'l
0.84 - Memory-limit
- .SENet

DPN-13
. I]-"ollyNet

&
Resr’ext-ml
®

Inception-ResnetV2

NASNet-A(s)
Xception AmoebaNet(s)
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0.77 , =
10 100 Million params

35x bigger models - 6% accuracy increase

[1] https://www.microsoft.com/en-us/research/blog/pipedream-a-more-effective-way-to-train-deep-neural-networks-using-pipeline-parallelism/ _




Introduction: Becoming more larger

* Model parallelism

- Hard to design and implement efficient model parallelism algorithm2]

- Using multiple GPUs, Each GPU is responsible for weight updates of assigned model layers
- Architecture and task-specific and Increasing demand for reliable and flexible infrastructure

1 mini-batch

: (replica) (replica)
c— N N\
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\ r‘T\ fr Pa P f B= ,1 viIine, lo B B i by 2~ | {,l,‘: P o
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(a) Data Parallelism.

[2] https://arxiv.org/pdf/1809.02839.pdf
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Introduction: Model Parallelism

O Scaling arbitrary DNN architecture by partitioning models

U Layers can be partitioned into cells and each cell is then placed on separate accelerator.
» (a) Sequential partitioning
= (b) Naive Model Parallelism (severely under-utilized)

Loss
Device 3 F; B.
3 { F1 waits for outputs of FO
Device2 | B. \ ERl=n Update
t , " ' ' i
Fo BO Update
Device 1 E B. ; ‘
T J l ‘ FO B0 ‘ ' Update
Device 0 d B. Fo . Time | i B, | updae
| \ / Naive Model(f)arallellsm
Gradients

(a)
Only one accelerator is active when the model is distributed across the accelerators
Resource is severely under-utilized!



GPipe: Enhancing efficiency with pipeline parallelism

Flexible library for efficient training of large neural networks

= GPipe partitions the network into K cells and places the k-th cell on the k-th accelerator.

» Forward: Dividing a minibatch of size N into M equal micro-batches (pipelined through K accelerators)
= Backward: Gradients for each micro-batch are computed on same model parameters used for forward

» Update: To keep consistency, gradients are updated at the end after all micro-batches are processed

" Fl) - BO Update
Loss
/ \ Fo Bn St
Device 3 F. B. F. ‘ B. L
7f7 I Fo TI me B 5 Update
Device2 | F. | B. Naive model parallelism
T = = (b)
Device 1 F - B Fso | Fs1 | Fs2 | Fas| Bss | Bsz | Bss | Bao Update
T l ] F F Fz2 | F B B B:1 | B Update
Device 0 Fo B.
i Fio | Fi1 | Fi2 | F1a B B2 B Bio Update
\ ,/ Fnu‘Fm Faz| Fa Bubble B

0.2 0.3 0,3 B[I,Z Bu.! B:: 0 Update
Gradients | - -
f Pipeline pa}!:')allellsm

(a) Micro-batch Consistent training



GPipe: Enhancing efficiency with pipeline parallelism

* Pipeline parallelism

- Amount of overlapped processing increases, allowing same amount of data to be processed in less timel3!
- As size of Micro-batch gets smaller, next GPU can start working faster (idle time gradually decreases)
- However, size is too small, efficiency is reduced (Not enough to compute workload for GPU)

— RO
@ = & Tl

| mini-batch | n micro-batches

o I I
o N o EE
oos - EEE

2 micro-batches

[3] https://www.kakaobrain.com/blog/66




GPipe: Performance optimization

 Re-materialization: to reduce activation memory requirement

- Forward, each accelerator only stores output activations at the partition boundaries

- Only hidden layers connecting separate models to each other is placed in memory
- Backward, the k-th accelerator recompute forward function

input

>R

>R

output



GPipe: Performance optimization

 Re-materialization: to reduce activation memory requirement

- Forward, each accelerator only stores output activations at the partition boundaries
- Backward, the k-th accelerator recompute forward function

- Bubble overhead: some idle time per accelerator

Fso| Fs1 | Fs2 | Fas| Bags B Bs.1 Bso Update

Foo | F21 | F22 | F23 B2 B2 B2.1 B2o Update

F1,o F1,1 Fi2 | F13 Bis Bi2 B1.1 B1o Update
Foo | Fo1 | Fo2 | Fozs [ BUbble J Bos Bo.2 Bo,1 Boo | Update

M micro-batches

K accelerator

Bubble time is amortized over number of micro-steps
(to be negligible when M 24*K)



GPipe: Performance analysis --- Scalability

* Performance with two different types of models: AmoebaNet

AmoebaNet (convolutional model), Transformer (sequence-to-sequence model)
Both re-materialization and pipeline parallelism to benefit memory utilization
Biggest model size GPipe can support under reasonably large input size
25x more memory than what is possible w/o GPipe

Table 1: Maximum model size of AmoebaNet supported by GPipe under different scenarios. Naive-1
refers to the sequential version without GPipe. Pipeline-k means k partitions with GPipe on k

accelerators. AmoebaNet-D (L, D): AmoebaNet model with L normal cell layers and filter size D .

Transformer-L: Transformer model with L layers, 2048 model and 8192 hidden dimensions. Each
model parameter needs 12 bytes since we applied RMSProp during training.

NVIDIA GPUs (8GB each) Naive-1 Pipeline-1  Pipeline-2 Pipeline-4 Pipeline-8
AmoebaNet-D (L, D) (18, 208) (18, 416) (18, 544) (36, 544) (72.:512)
of ModeTl Parameters 82M 318M 542M 1.05B 1.8B
Total Model Parameter Memory  1.05GB 3.8GB 6.45GB 12.53GB 24.62GB
Peak Activation Memory 6.26GB 3.46GB 8.11GB 15.21GB 26.24GB
Cloud TPUv3 (16GB each) Naive-1 Pipeline-1  Pipeline-8  Pipeline-32  Pipeline-128
Transformer-L 3 13 103 415 1663
# of Model Parameters 282.2M 785.8M 5.3B 21.0B 83.9B
Total Model Parameter Memory 11.7G 8.8G 59.5G 235.1G 937.9G

Peak Activation Memory 3.15G 6.4G 50.9G 199.9G 796.1G

10



GPipe: Performance analysis --- Scalability

* Performance with two different types of models: Transformer

AmoebaNet (convolutional model), Transformer (sequence-to-sequence model)
Both re-materialization and pipeline parallelism to benefit memory utilization
Biggest model size GPipe can support under reasonably large input size
298x more memory than what is possible w/o GPipe

Table 1: Maximum model size of AmoebaNet supported by GPipe under different scenarios. Naive-1
refers to the sequential version without GPipe. Pipeline-k means k partitions with GPipe on k
accelerators. AmoebaNet-D (L, D): AmoebaNet model with L normal cell layers and filter size D .
Transformer-L: Transformer model with L layers, 2048 model and 8192 hidden dimensions. Each
model parameter needs 12 bytes since we applied RMSProp during training.

NVIDIA GPUs (8GB each) Naive-1 Pipeline-1  Pipeline-2 Pipeline-4 Pipeline-8
AmoebaNet-D (L, D) (18, 208) (18, 416) (18, 544) (36, 544) (72,:512)
# of Model Parameters 82M 318M 542M 1.05B 1.8B
Total Model Parameter Memory 1.05GB 3.8GB 6.45GB 12.53GB 24.62GB
Peak Activation Memory 6.26GB 3.46GB 8.11GB 15.21GB 26.24GB
Cloud TPUv3 (16GB each) Naive-1 Pipeline-1  Pipeline-8  Pipeline-32  Pipeline-128
Transformer-L 3 13 103 415 1663

# of Model Parameters 282 2M 785.8M 5.3B 21.0B 83.9B
Total Model Parameter Memory 11.7G 8.8G 59.5G 235.1G 937.9G

Peak Activation Memory 3.15G 6.4G 50.9G 199.9G 796.1G




GPipe: Performance analysis --- Efficiency

 Normalized training throughput of AmoebaNet and Transformer

o In Transformer, for M=32 (# micro-batch per minibatch), the speed up from k=2 to k=8 is 3.5x. The

improvement is almost linear. (k= #partitions)
o In AmoebaNet, the improvement is sublinear due to imbalanced computation distribution.

TPU Throughputs
TPU AmoebaNet Transformer
" = 2 4 8 2 4 8

M=1 1 LI3 138 1 107 13
M=4 107 126 172 17 32 48
M=32 121 184 348 18 34 63 .




GPipe: Performance analysis --- Overhead Breakdown

* There are some overheads...

2.9%
41%

3.2%

22.5%

computation

weight update
ik recompute

load imbalance

bubble
overhead

setup overhead

Recompute introduces performance overhead in exchange for
smaller memory footprint



GPipe: Case Study

* Image classification

- AmoebaNet with scaled input image size (480x480)
- Single model: 4 partitions, 84.4% (top-1), 97% (top-5)

- Effectiveness of giant convolution networks on other image datasets through transfer learning

Table 5: Image classification accuracy using AmoebaNet-B (18, 512) first trained on ImageNet 2012
then fine-tuned on others. Please refer to the supplementary material for a detailed description of our
training setup. Our fine-tuned results were averaged across 5 fine-tuning runs. Baseline results from
Real er al. [12] and Cubuk et al. [26] were directly trained from scratch. *Mahajan er al.’s model [27]]

achieved 85.4% top-1 accuracy but it was pretrained on non-public Instagram data. Ngiam er al. [28]

achieved better results by pre-training wjith data from a private dataset (JET-300M).

Dataset # Train # Test  #Classes  Accuracy (%) Previous Best (%)
ImageNet-2012 1,281,167 50,000 1000 84.4 83.9 [12] (85.4*[27])
CIFAR-10 50,000 10,000 10 99.0 98.5 [26]
CIFAR-100 50,000 10,000 100 91.3 89.3 [26]

Stanford Cars 8,144 8,041 196 94.6 94.8™ [26]

Oxford Pets 3,680 3,369 37 95.9 93.8* [29]

Food-101 75,750 25,250 101 93.0 90.4™ [30]

FGVC Aircraft 6,667 3333 100 02.7 92.9* [31]

Birdsnap 47,386 2,443 500 83.6 80.2* [32]
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GPipe: Case Study

* Massive Massively Multilingual Machine Translation
- Scaled transformer: (1) depth by increasing number of layers, (2) width by increasing hidden dimensions
- 1.3B wide model with (12,16384,32), 1.3B deep model (24,8192,16)
- Quality of both model is similar, deeper model outperforms by huge margins on low-resource languages
(suggesting that increasing model depth might be better for generalization)

25- !

Bilingual Baselines

2 -, (=T 6, 8192 16)
- T(24, 8192, 16)
] T(12, 16384, 32)

T(32, 16384, 32)
T(64, 16384, 32)

10 -

A BLEU

-10 -, | | | l 1 o
0 20 40 60 80 100 1 5
*BLEU (Bilingual Evaluation Understudy) score Languages



GPipe: Conclusion

« Training time is reduced by parallelism and pipelining to minimize bubble time.

« Activation memory requirement is reduced by micro-batching and re-computing the
forward activations.

» Gpipe with 8 partitions of Nvidia 8GB GPU each, can support a AmoebaNet-D of up to
1.5B parameters.

* Training throughput can be increased by tuning #partitions and #micro-batches.

« While powerful and giant models can be supported, the overheads are not negligible.



Questions to Discuss?

* Memory requirements and computation flops of different layers are often quite imbalanced
(although transformer is a relatively balanced model), how could we automatically find “optimal”
partitioning (the scheduling algorithm)?

* How possible node failures are taken into account?

* Gpipe assumes that a single layer is able to fit the memory requirements of a single accelerator.
How to combine the partitioning of intra-layer and inter-layer and use the resource efficiently?



