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Figure from NVIDIA website
 

https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/


● Number of DNN parameters 
○ Past: million

■ AlexNet (60M), VGG-19 (144M), ResNet-50 (26M)
○ Present: billion

■ Megatron-LM (8.3B), T5 (11B), V-MoE-15B*, SwinV2-G (3B)
○ Future: trillion?

■ GPT-3 (0.18T), Switch-C (1.6T)*, MT-NLG (0.53T)
● GPU architecture

○ Past: V100, 32GB memory, 130TFLOPS
○ Present: A100, 80GB memory, 310TFLOPS

Background

* indicates sparse models
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● Large models cannot fit within current device memory
● Issues with previous parallelism

○ Data Parallelism (DP)
■ Good compute/communication efficiency
■ Poor memory efficiency

○ Model Parallelism (MP)
■ Poor compute/communication efficiency
■ Good memory efficiency

○ Pipeline Parallelism (PP)
■ G-Pipe: require large batch size to hide bubble
■ PipeDream: store multiple copies of stale parameters

Problem



Analysis: Memory Consumption

● Major memory usage: model states and activation checkpoints

Table from ZeRO-Infinity 
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● Analysis of memory consumption
○ Model states: parameters, gradients, optimizer states

■ Problem: DP replicates model states across all devices
■ Solution: ZeRO-DP, remove memory redundancies in DP

○ Activation, temporary buffers, fragmented memory
■ Solution: ZeRO-R

1. Avoid duplication in activation checkpoints of MP
2. Set appropriate size for temporary buffers
3. Prevent memory fragmentation

Idea



● Memory requirement from model states (𝞧 := # parameters)
○ Parameters (fp16): 2𝞧
○ Gradients (fp16): 2𝞧
○ Optimizer states: e.g. Adam 12𝞧

i. Parameters (fp32): 4𝞧
ii. Momentum (fp32): 4𝞧
iii. Variance (fp32): 4𝞧

● Approach: partition each of them to all DP processes 

Method 1: ZeRO-DP
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● Communication analysis (𝞧 := # parameters)
○ Baseline DP: one all-reduce, 2𝞧
○ Pos+g: 2𝞧

i. Scatter-reduce on gradients: 𝞧
ii. All-gather on updated parameters: 𝞧

○ Pos+g+p: 3𝞧 (1.5x communication)
i. All-gather on parameters for forward: 𝞧
ii. All-gather on parameters for backward: 𝞧
iii. Scatter-reduce on gradients: 𝞧

Method 1: ZeRO-DP



● Pa: Partitioned Activation Checkpointing
● CB: Constant Size Buffers
● MD: Memory Defragmentation

Method 2: ZeRO-R



● MP usually requires replication of the activation
○ e.g. matrix multiplication

                               ×

● Approach
○ Partition activation checkpoints across devices (Pa)
○ Offload activation to the CPU (Pa+cpu) if DP is the bottleneck
○ Can work together with rematerialization

Method 2-1: Partitioned Activation Checkpointing

A1

A2

Input



● Communication analysis (M := message size of one input)
○ Baseline Megatron-LM: 12M

i. Forward: 2 all-reduces 4M
ii. Rematerialization: 2 all-reduces 4M
iii. Backward: 2 all-reduces 4M

Method 2-1: Partitioned Activation Checkpointing
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● Communication analysis (M := message size of one input)
○ Baseline Megatron-LM: 12M

i. Forward: 2 all-reduces 4M
ii. Rematerialization: 2 all-reduces 4M
iii. Backward: 2 all-reduces 4M

○ ZeRO-R Pa: 13M (<10% overhead)
i. Baseline: 12M
ii. All-gather on activation: M

Method 2-1: Partitioned Activation Checkpointing

Figure from Megatron-LM



● Example of temporary buffer: fuse all parameters into one buffer 
before all-reduce for higher bandwidth usage

● Approach (CB)
○ Only allow constant-size buffer (not depend on model size)
○ Keep efficiency by setting the buffer size large enough

Method 2-2: Constant Size Buffers



● Memory life
○ Short lived memory: discarded activation
○ Long lived memory: checkpointed activation, model states

● Interleaving of short and long lived memory causes fragmentation

● Approach (MD): pre-allocate contiguous memory chunks for long 
lived memory

Method 2-3: Memory Defragmentation



● Support 10B-level 
model training without 
MP and PP
(1.4B without ZeRO)

● Make large model 
training easier

Experiments: ZeRO-DP vs. DP 



Experiments: ZeRO-DP & ZeRO-R vs. MP

● ZeRO avoids inefficient internode MP with ZeRO-DP
● Efficiently scale to 100B-level models



Experiments: ZeRO-DP & ZeRO-R

● Super-linear scaling in total performance



Experiments: Ablation Studies

● Pa effectively enlarge max model size
● For 100B-level models, the effect of offloading to CPU is noticeable
● Lower memory -> larger batch size -> better throughput per GPU 



Application of ZeRO

● Turing-NLG (17B)

● Megatron-Turing NLG (530B)
○ 560 DGX A100 servers each with 8 NVIDIA A100 80G GPUs
○ 3D parallelism (8-way MP, 35-way PP, 16-way ZeRO-DP)
○ Combination of Megatron-LM with DeepSpeed (ZeRO)



Strengths of ZeRO

● ZeRO-DP completely resolves memory redundancies in DP, while 
largely preserving its communication efficiency

● ZeRO-R helps further reducing memory consumed by activation 
checkpoints

● ZeRO can be applied together with previous MP, PP and activation 
checkpointing techniques



Limitations of ZeRO

● To train a trillion-parameter model with ZeRO, the model states still 
has to fit in the total memory of all devices, i.e. the memory 
optimization is still upper bounded by the memory efficiency of MP

● ZeRO only considers reducing device memory consumption to 
make training giant models feasible, yet training speed is still 
limited by computing power (total FLOPS), e.g. training a 
trillion-parameter model can potentially take >100 days even with 
1,000 state-of-the-art GPUs



Discussion

1. Is it possible to further reduce memory consumption in order to 
enable huge model training with fewer devices?

2. We have seen that search-based methods (TASO, GO, FlexFlow, 
etc.) prove to be beneficial for many ML system tasks. Is it 
feasible to apply some automatic search for improving ZeRO?

3. Previously model size tends to increase much faster than device 
performance. The current largest models already require top 
supercomputers for training. Given this situation, is it reasonable 
to further consider training models with trillions of parameters?



Thank you for listening!


