
Semi-supervised Classification With 
Graph Convolutional Networks (2017)
Thomas N. Kipf, Max Welling

Presenter: Hui Chen, Machine Learning Department



2

Outline
1. What is a graph neural network (GNN)?
2. Problem setting of the paper
3. Previous methods
4. Formulation of graph convolutional network(GCN)
5. Theory behind GCN
6. Questions and my answers



3

What is a GNN?
GNNs are NNs that operate on graph-structured data.

Why do we need GNNs?
1. To capture correlation inside sample.
2. To capture correlation across samples.

Examples:



4

GNN example
1. To capture correlation inside sample

Protein structure [1] Travelling salesman problem [2]

[1] Vladimir Gligorijević. et al. Structure-based protein function prediction using graph convolutional networks. 2021
[2] Chaitanya K. Joshi. et al. An Efficient Graph Convolutional Network Technique for the Travelling Salesman Problem. 2019



5

GNN example
2. To capture correlation across sample

Recommender system [1]
E.g., Pinterest [2]

[1] Shoujin Wang. et al. Graph Learning based Recommender Systems: A Review. 2021
[2] Rex Ying. et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems. 2018



6

Taken from slides of Prof. Jia



7

Problem setting
Undirected graph G = 𝑉, 𝐸 , where 𝑉 = 𝑁.
Node 𝑣! ∈ 𝑉 has a feature vector 𝑋! ∈ 𝑅".
Edge (𝑣! , 𝑣#) ∈ 𝐸 can be weighted or unweighted.
Some nodes are labeled, and the task is to make predictions to those unlabeled.



8

Previous methods

Vanilla neural network + graph information for regularization:

Main idea: penalize ∥ 𝑓 𝑥! − 𝑓(𝑥") ∥# for each edge (𝑣!, 𝑣") ∈ 𝐸, where
𝑓 is a neural network.

Formulation: e.g., 𝑟𝑒𝑔 = ∑!,"𝐴!" ∥ 𝑓 𝑥! − 𝑓(𝑥") ∥#, where 𝐴 is the
adjacency matrix (binary or weighted).

Deficiency: assume that connected nodes tend to share the same label,
which might be violated in practice.



9

Graph convolutional network(GCN)

GCN Layer:
σ 2𝐴𝑋𝑊

σ: activation function
X: input matrix ∈ 𝑅%∗'

𝑊: parameter matrix ∈ 𝑅'∗'!

Graph Laplacian 2𝐴 = 6𝐷()/# 8𝐴6𝐷()/#, where 8𝐴 = 𝐴 + 𝐼, 6𝐷 is a diagonal matrix
with 6𝐷!! = ∑" 8𝐴!".



10

Example of GCN layer

𝑉! 𝑉"

𝑉#
𝑉$

2𝐴 = 6𝐷()/# 8𝐴6𝐷()/#, where 8𝐴 = 𝐴 + 𝐼, 6𝐷 is a diagonal matrix with 6𝐷!! = ∑" 8𝐴!".

𝑉%

𝐴 = #𝐴 =

$𝐷-./0 = &𝐴 =



11

Example of GCN layer

&𝐴 =
Except for the diagonals, 2𝐴 has
the same pattern of non-zero
entries with 𝐴

𝑋 =

𝑥)
𝑥#
𝑥+
𝑥,
𝑥-

⇒ 2𝐴𝑋 =

0.5𝑥) + 0.41𝑥#
0.41𝑥) + 0.33𝑥# + 0.33𝑥+
0.33𝑥# + 0.33𝑥+ + 0.41𝑥,

0.41𝑥, + 0.5𝑥-
𝑥-



12

Example of GCN layer

GCN layer: σ 2𝐴𝑋𝑊
𝑊: feature transformation
2𝐴: message passing and aggregation

𝑋 =

𝑥$
𝑥%
𝑥&
𝑥'
𝑥(

⇒ 3𝐴𝑋 =

0.5𝑥$ + 0.41𝑥%
0.41𝑥$ + 0.33𝑥% + 0.33𝑥&
0.33𝑥% + 0.33𝑥& + 0.41𝑥'

0.41𝑥' + 0.5𝑥(
𝑥(

Convolution is just weighted sum of a node’s feature and its neighbors’ features.
aka message passing and aggregation

𝑉! 𝑉"

𝑉#
𝑉$

𝑉%



13

Why GCNs work?
In essence, GCN layer is an approximated spectral convolution.



14

Why GCNs work?

It is not a new idea to approximate the spectral convolution, such as [1].

What’s special about GCN?

Two main streams of GNN architectures:
1. Spectral-based.
spectral graph theory, eigendecomposition, matrix multiplication, sound theory but inefficient implementation

2. Spatial-based.
Message passing among nodes, lack of theory but efficient implementation

GCN is at the intersection of these two main streams!
[1] Michael Defferrard. et al. Convolutional neural networks on graphs with fast localized spectral filtering. 2016



15

GCN structure in the paper

--- Why only two layers?

--- Because deep GCNs do not perform well. Why?

--- An intuitive explanation is, graph convolution can be viewed as
information exchange between neighbors, and if we keep doing this, all
nodes’ features will become more and more similar.



16

GCN structure in the paper

--- Graph Laplacian 2𝐴 has a smoothing effect. [1] proves that if we apply
the graph Laplacian enough times, all nodes’ features will converge to
the same value. Hence the name over-smoothing.

-- Still an open question. Researchers try to explain it from various
perspectives, such as Markov Process [2], Neural Tangent Kernel [3].

[1] Qimai Li. et al. Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning. 2018
[2] Kenta Oono. et al. GRAPH NEURAL NETWORKS EXPONENTIALLY LOSE EXPRESSIVE POWER FOR NODE CLASSIFICATION, 2020
[3] Wei Huang. et al. Towards Deepening Graph Neural Networks: A GNTK-based Optimization Perspective. 2022



17

GCN structure in the paper

--- What if we need deep GCNs?

--- Just stack two GCN layers after a deep neural network.



18

Experiment results from the paper



19

Summary
GCN Layer:

σ 2𝐴𝑋𝑊

Approximation to spectral convolution.
Intersection of spectral-based and spatial-based GNNs.
Two layers are enough.



20

Questions
1. After reading the paper, someone claims: graph convolution is matrix 

multiplication, which takes 𝑂(𝑛+), so it won’t work for large-scale
problems. Do you agree?

2. Is there any connection between graph neural networks and the self-
attention mechanism?

3. GCN still relies on the assumption that connected nodes tend to be in
the same class, though not as heavily as previous methods. What if we
want to apply GCN when this assumption is violated?



21

Answer Q1
torch_geometric: sparse matrix multiplication

dgl: message passing

If the graph is large, a common practice is not to load the whole graph
into the memory. Instead, we sample some subgraph in each iteration.



22

Answer Q2
On one hand, the blog post [1] claims that transformers are, in essence,
GNNs.

On the other hand, [2] proposes Graphormer, an extension of Transformer,
and claims that with specific choice of hyper-parameters, Graphormer can
represent popular GNN models including GCN.

A recent work [3] (ICLR 2022) tries to analyze over-smoothing problem of
BERT from a GCN perspective.

[1] https://towardsdatascience.com/transformers-are-graph-neural-networks-bca9f75412aa
[2] Chengxuan Ying. et al. Do Transformers Really Perform Bad for Graph Representation? 2021
[3] Han Shi. et al. Revisiting Over-smoothing in BERT from the Perspective of Graph. 2022



23

Thank you for listening!



Inductive	Representation	Learning	on	
Large	Graphs

William	L.	Hamilton,	Rex	Ying,	Jure	Leskovec

Paper	presentation	prepared	by
Paola	A.	Buitrago	
March	21st,	2022

15-849:	Machine	Learning	Systems
Carnegie	Mellon	University,	Pittsburgh,	PA



Overview

• Context:	Large	data	graphs	used	for	prediction	and	graph	analysis	
tasks.
• Low-dimensional	vector	embeddings:
• are	a	dense	vector	where	high-dimensional	information	about	a	node	graph’s	
neighborhood.
• are	produced	using	dimensionality	reduction	techniques.	
• in	large	graphs	have	proved	extremely	useful	as	feature	inputs	for	a	wide	
variety	of	prediction	and	graph	analysis	tasks.	

• SOTA	approach
• Generation	of	node	vector	embeddings from	a	single	fixed	graph.	



Overview

• Solution
• For	production	ML	systems,	they	operate	on	evolving	graphs	and	constantly	
encounter	unseen	nodes.	
• Real	world	applications	require	embeddings to	be	quickly	generated	for	
unseen	nodes	or	entirely	new	(sub)	graphs.
• Inductive	approach	to	generating	node	embeddings.	
• Generation	of	low	dimensional	vector	embeddings for	unseen	nodes	or	
entirely	new	(sub)	graphs.	



Challenges

• Considering	unseen	nodes	requires	“Aligning”	newly	observed	
subgraphs	to	the	node	embeddings that	the	algorithm	has	already	
optimized	on.
• “Algorithm	needs	to	learn	to	recognize	structural	properties	of	a	
node’s	neighborhood	that	reveal	both	the	node’s	local	role	in	the	
graph,	as	well	as	its	global	position”
• Need	a	solution	that	can	be	implemented	in	a	computationally	
reasonable	time.	



Proposed	Approach

GraphSAGE (SAmple and	aggreGatE)
• Approach	that	leverages	node	features	in	order	to	learn	an	embedding	
function	that	generalizes	to	unseen	nodes.
• It	can	also	make	use	of	graph	structural	features	and	applied	to	graph	without	
node	features.	
• Train	a	set	of	aggregator	functions	that	learn	to	aggregate	feature	information	
from	a	node’s	local	neighborhood.	
• At	test	or	inference	time,	generate	embeddings for	entirely	unseen	nodes	by	
applying	the	learned	aggregate	functions.	
• Can	be	trained	without	task-specific	supervision,	and	also	on	a	fully	
supervised	manner.		



GraphSAGE (Graph	SAmple and	aggreGatE)



GraphSAGE - Embedding	Generation	Algorithm



GraphSAGE – Neiborhood Definition

To	keep	computational	footprint	fixed,	and	memory	and	expected	
runtime	predictable:

• Uniformly	sample	a	fixed-size	set	of	neighbors.	
• Draw	different	uniform	samples	at	each	iteration	k	in	the	algorithm	1.	



GraphSAGE – Learning	the	Parameters

Unsupervised	approach
• Apply	graph-based	loss	function	to	the	output	representations.	
• Tune	weight	matrices	and	parameters	of	aggregator	functions	via	
SGD.	

Supervised	approach
• Representations	to	be	used	on	a	specific	downstream	task
• Replace	or	augment	unsupervised	loss	with	a	task	specific	objective	
(e.g.	cross-entropy	loss)



GraphSAGE - Aggregators

Agregator Description Advantages Limitations

Mean aggregator Elementwise	mean	on	
vectors	of	neighbor	set

LSTM	aggregator LSTM	architecture

Pooling	aggregator Vector	fed	to	a	FC	NN +	
elementwise	max	
pooling	operation



Evaluation

• Test	ability	to	generate	useful	embeddings on	unseen	data:
• Evaluated	on	three	node-classification	benchmarks.
1. Inductive	Learning	on	Evolving	Graphs:	Citation	data
2. Inductive	Learning	on	Evolving	Graphs:	Reddit	data
3. Generalization	across	graphs:	Protein-protein	interactions



Experiments

Baselines
• Random	classifier
• Logistic	regression	feature-
based	classifier
• DeepWalk algorithm
• Raw	features	+	DeepWalk
embeddings

GraphSAGE variants
• GraphSAGE-GCN
• GraphSAGE-mean
• GraphSAGE- LSTM
• GraphSAGE-pool



Experiment	Design

Goals

(1) Verifying	the	improvement	of	GraphSAGE over	the	baseline	
approaches

(2) Providing	a	rigorous	comparison	of	the	different	GraphSAGE
aggregator	architectures



Experiments	– Evolving	Information	Graphs

Task
Predict	paper	subject	category	on	
a	large	citation	dataset.

Features
• Node	degrees.	
• Sentence	embeddings for	
abstracts.
• GenSim word2vec	300-dim	word	
vectors.

Data
• From	the	Thomson	Reuters	Web	
of	Science	Core	Collection.
• All	papers	in	6	biology-related	
fields	for	the	years	2000-2005.
• 302,424	nodes	with	and	avg.	
degree	of	9.15.
• Training:	2000-2004.	
• Test:	2005(30%	validation).	

Citation	Data



Experiments	– Evolving	Information	Graphs

Task
Predict	which	community	different	
Reddit	posts	belong	to.

Features
• Off	the	shelf	300-dim	word	vectors.	
• Per	post:	

• Concatenate	avg.	embedding	of	post	
title,	avg.	embeddings of	all	
comments,	post	score,	number	of	
comments.		

Data
• Posts	connected	if	the	same	user	
comments	on	both.	
• 232,965	posts	with	an	avg.	degree	
of	492.	
• Post	of	50	subreddits/communities	
made	in	Sep/2014.
• Training:	First	20	days.	
• Test:	Remaining	days	(30%	
validation).	

Reddit	data



Experiments	– Generalization	Across	Graphs

Task
Classify	protein	roles	in	PPI	graphs.	
Each	graph	from	a	different	human	
tissue.	
Labels:	gene	ontology	sets	(121	total)

Features
• Positional	gene	sets,	
• motif	gene	sets,	
• immunological	signatures.

Data
• Avg:	2372	nodes/graph	with	an	
avg.	degree	of	28.8.	
• Training:	20	graphs.	
• Test:	2	graphs	(+	2	graphs	for	
validation).	

PPI	– Protein-Protein	Interactions



Results



Results



Summary

GraphSAGE (SAmple and	aggreGatE)
• Approach	that	leverages	node	features	in	order	to	learn	an	embedding	
function	that	generalizes	to	unseen	nodes.
• It	can	also	make	use	of	graph	structural	features	and	applied	to	graph	without	
node	features.	
• Train	a	set	of	aggregator	functions	that	learn	to	aggregate	feature	information	
from	a	node’s	local	neighborhood.	
• At	test	or	inference	time,	generate	embeddings for	entirely	unseen	nodes	by	
applying	the	learned	aggregate	functions.	
• Can	be	trained	without	task-specific	supervision,	and	also	on	a	fully	
supervised	manner.		



Discussion	Questions

1. What	could	explain	that	the	LSTM	aggregator,	despite	not	being	
inherently	symmetric,	shows	strong	performance?

2. What	are	the	ideal	characteristics	of	aggregators	and	what	other	
potential	functions	could	be	considered	for	this	function?


