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Discussing the Lottery Ticket Papers

1. Why is it hard for SGD to learn sparse representations from scratch?
2. How to make the lottery tickets fit better for modern libraries (possibly at 

the cost of being less sparse)?
3. Can we use graphical models to learn the sparse connection topology?
4. Can we reformulate the sparse training problem as learning low-rank 

representations for high-dimensional data? E.g. using nuclear norm 
(OLE loss)/ rate distortion (MCR loss) to induce more interpretable 
sparse models instead of heuristically searching for sparse connections 
using pruning?

1



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Deep Learning Systems
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ML Model

Automatic Differentiation 

Graph-Level Optimization

Parallelization / Distributed Training

Code Optimization

Memory Optimization

ML Hardware
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Current ML Hardware

• CPUs
• Intel, ARM, AMD

• GPUs
• NVIDIA, AMD

• TPUs
• Google

• ML-specific accelerators ($20B market*)
• Graphcore, SambaNova, Eyeriss, Cerebras, etc.

3* source: https://www.idc.com/getdoc.jsp?containerId=prUS48127321
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CPUs

GPUs

TPUs

Compute Primitives Memory Hierarchy

Slides from Tianqi Chen, TVMConf, 2019
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Winograd: Fast Algorithms for 
Convolutional Neural Networks

5
5/7/22

Andrew Lavin, Scott Gray
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Overview

• Key idea: the Winograd filtering algorithm with minimal number of floating-
point multiplications

Compute a convolution with an input size M x N and a filer size R x S
• Vanilla Convolution: 𝑂!,# = ∑$%&' ∑(%&) ∑*%&+ 𝐷$,!,*,#,( ∗ 𝑊$,*,(

• # floating-point multiplications = C x R x S x (M-R+1) x (N-S+1)

• Winograd filtering algorithm: 𝑂 = 𝐷⊛𝑊 = 𝐴- 𝐺𝐷𝐺- ∘ 𝐵-𝑊𝐵 𝐴
• # floating-point multiplications = C x M x N
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Why are we interested in reducing # multiplications?

7Bill Dally (Stanford), Cadence Embedded Neural Network Summit, February 1, 2017

https://ip.cadence.com/uploads/presentations/1000AM_Dally_Cadence_ENN.pdf
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Convolution to Matrix Multiplications

Motivation: transforming convolution 
to matrix multiplications with 
improved data layout/locality
• Step 1: image -> matrix

8
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Convolution to Matrix Multiplications

Motivation: transforming convolution 
to matrix multiplications with 
improved data layout/locality
• Step 1: image -> matrix
• Step 2: conv -> matrix mul
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A specific matrix multiplication with data reuse opportunities.
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Fast Winograd Convolution
𝑂 = 𝐷⊛𝑊 = 𝐴- 𝐺𝑊𝐺- ∘ 𝐵-𝐷𝐵 𝐴, where 𝐴, B, and G are constant matrices
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Fast Winograd Convolution
𝑂 = 𝐷⊛𝑊 = 𝐴- 𝐺𝑊𝐺- ∘ 𝐵-𝐷𝐵 𝐴, where 𝐴, B, and G are constant matrices
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Fast Winograd Convolution
𝑂 = 𝐷⊛𝑊 = 𝐴- 𝐺𝑊𝐺- ∘ 𝐵-𝐷𝐵 𝐴, where 𝐴, B, and G are constant matrices
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Fast Winograd Convolution
𝑂 = 𝐷⊛𝑊 = 𝐴- 𝐺𝑊𝐺- ∘ 𝐵-𝐷𝐵 𝐴, where 𝐴, B, and G are constant matrices
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A Toy Example

• A 2D convolution on a 4x4 image with a filter shape of 2x2
• 𝑂 = 𝐷⊛𝑊 = 𝐴- 𝐺𝑊𝐺- ∘ 𝐵-𝑑𝐵 𝐴

14Fast Algorithms for Convolutional Neural Networks. Andrew Lavin et al.
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Cost of Winograd Algorithm 

𝑂 = 𝐷⊛𝑊 = 𝐴- 𝐺𝑊𝐺- ∘ 𝐵-𝐷𝐵 𝐴

• 𝐺𝑊𝐺-, 𝐵- 𝐷𝐵: only involve constant multiplications, much cheaper than 
floating point multiplications

• 𝐺𝑊𝐺- ∘ 𝐵-𝐷𝐵 : N x N floating point multiplications
• 𝐴- 𝐺𝑊𝐺- ∘ 𝐵-𝐷𝐵 𝐴 : constant multiplications

• # floating point multiplications = 𝑁×𝑁

• Complexity reduction .!

)!×(.1),&)! (up to 9 times for 3x3 convolutions)

• What are the other costs of Winograd?

15
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Consistently Outperforms Vanilla Convolutions

16

VGG16, batch size = 1, relative performance
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Other Ways to Transform Convolution to Matrix 
Multiplication?

17
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Other Fast Implementation for Conv2Matmul
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(ii) Split weight
(iii) Transform Conv to Matmul with OffsetAdd

Can be further merged to 1 Matmul

Conv2Matmul version 2 (EINNET)
40% faster than Winograd on A100 GPU

EINNET: Optimizing Tensor Programs with Derivation-Based Transformations. Wang et al.
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Combining WinoGrad with Model Compression

• Issue: transformations for inputs 
and weights convert sparse 
activations and weights to dense 
ones

19
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Sparse-Winograd Convolution

Standard Winograd
• 𝑆 = 𝐴-× 𝐺×𝑃𝑟𝑢𝑛𝑒 𝑔 ×𝐺- ∘ 𝐵-×𝑅𝑒𝐿𝑈 𝑑 ×𝐵 ×𝐴
• The sparse matrices Prune(g) and ReLU(d) become dense again when 

transformed to Winograd domain

Sparse-Winograd-ReLU CNN:
• 𝑆 = 𝐴- 𝑃𝑟𝑢𝑛𝑒 𝐺𝑔𝐺- ∘ 𝑅𝑒𝐿𝑈 𝐵-𝑑𝐵 𝐴
• Move the pruning and ReLU operations into Winograd to make the results 

sparse

20Liu, X; Pool, J; Han, S; Dally, W. Efficient Sparse-Winograd Convolutional Neural Networks. arXiv:1802.06367, 2018
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Sparse-Winograd Convolution

• Key Idea: move the pruning and 
ReLU operations into Winograd to 
make the results sparse

21
Liu, X; Pool, J; Han, S; Dally, W. Efficient Sparse-Winograd Convolutional Neural Networks. arXiv:1802.06367, 2018
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Sparse Winograd Algorithm Reduces Multiplications by 
10x while Maintaining/Improving Accuracy

22Liu, X; Pool, J; Han, S; Dally, W. Efficient Sparse-Winograd Convolutional Neural Networks. arXiv:1802.06367, 2018

Top-1 validation accuracy vs density for ResNet-18 on ImageNet
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Other Techniques to Optimize ML on Hardware

23

Memory access is a bottleneck
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Loop Tiling: Leverage Local Memory for Data Reuse

dram float A[n][n], B[n][n], C[n][n]; 

for (int i = 0; i < n; ++i) { 

for (int j = 0; j < n; ++j) {
register float c = 0;
for (int k = 0; k < n; ++k) { 
register float a = A[i][k];

register float b = B[j][k];

c += a * b;
}

C[i][j] = c;
} 

} 

24

A’s DRAM accesses: n^3
B’s DRAM accesses: n^3
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Loop Tiling: Leverage Local Memory for Data Reuse
dram float A[n/v1][n/v3][v1][v3]; 

dram float B[n/v2][n/v3][v2][v3]; 

dram float C[n/v1][n/v2][v1][v2]; 
for (int i = 0; i < n/v1; ++i) {

for (int j = 0; j < n/v2; ++j) { 
register float c[v1][v2] = 0; 

for (int k = 0; k < n / v3; ++k) {

register float a[v1][v3] = A[i][k];
register float b[v2][v3] = B[j][k];

c += dot(a, b.T); 
} 

C[i][j] = c;

}
} 25Figure from Tianqi Chen
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Tiled Matrix Multiplication
dram float A[n/v1][n/v3][v1][v3]; 

dram float B[n/v2][n/v3][v2][v3]; 

dram float C[n/v1][n/v2][v1][v2]; 
for (int i = 0; i < n/v1; ++i) {

for (int j = 0; j < n/v2; ++j) { 
register float c[v1][v2] = 0; 

for (int k = 0; k < n / v3; ++k) {

register float a[v1][v3] = A[i][k];
register float b[v2][v3] = B[j][k];

c += dot(a, b.T); 
} 

C[i][j] = c;

}
} 26Figure from Tianqi Chen

A’s DRAM accesses: n^3 / v2
B’s DRAM accesses: n^3 / v1
A’s register cost: v1 * v3
B’s register cost: v2 * v3
C’s register cost: v1 * v2
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Common Data Reuse in DNN Computations

27DNN Accelerator Architectures. ISCA Tutorial 2019. Joel Emer et al. 
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Discussions

• Q1: Does the Winograd algorithm work for other linear algebra operators 
in deep learning, such as depth-wise convolution, transposed convolution?

• Q2: What are the hardware optimizations we should consider to make 
deep learning faster?
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