#### **Discussing the Lottery Ticket Papers**

- 1. Why is it hard for SGD to learn sparse representations from scratch?
- 2. How to make the lottery tickets fit better for modern libraries (possibly at the cost of being less sparse)?
- 3. Can we use graphical models to learn the sparse connection topology?
- 4. Can we reformulate the sparse training problem as learning low-rank representations for high-dimensional data? E.g. using nuclear norm (OLE loss)/ rate distortion (MCR loss) to induce more interpretable sparse models instead of heuristically searching for sparse connections using pruning?



#### Recap: Deep Learning Systems



**Automatic Differentiation** 

**Graph-Level Optimization** 

Parallelization / Distributed Training

**Code Optimization** 

**Memory Optimization** 

ML Hardware

#### **Current ML Hardware**

- CPUs
  - Intel, ARM, AMD
- GPUs
  - NVIDIA, AMD
- TPUs
  - Google
- ML-specific accelerators (\$20B market\*)
  - Graphcore, SambaNova, Eyeriss, Cerebras, etc.

#### **Compute Primitives**

**Memory Hierarchy** 



Slides from Tianqi Chen, TVMConf, 2019

### Winograd: Fast Algorithms for Convolutional Neural Networks

Andrew Lavin, Scott Gray

#### Overview

 Key idea: the Winograd filtering algorithm with minimal number of floatingpoint multiplications

Compute a convolution with an input size M x N and a filer size R x S

- Vanilla Convolution:  $O_{x,y} = \sum_{c=1}^{C} \sum_{\nu=1}^{R} \sum_{u=1}^{S} D_{c,x+u,y+\nu} * W_{c,u,\nu}$ 
  - # floating-point multiplications = C x R x S x (M-R+1) x (N-S+1)
- Winograd filtering algorithm:  $O = D \circledast W = A^T [GDG^T] \circ [B^T WB] A$ 
  - # floating-point multiplications = C x M x N

#### Why are we interested in reducing # multiplications?

|                     |             | Relati | ve Energ | y Cost | _     |  |
|---------------------|-------------|--------|----------|--------|-------|--|
| Operation:          | Energy (pJ) |        |          | -      |       |  |
| 8b Add              | 0.03        |        |          |        |       |  |
| 16b Add             | 0.05        |        |          |        |       |  |
| 32b Add             | 0.1         |        |          |        |       |  |
| 16b FP Add          | 0.4         |        |          |        |       |  |
| 32b FP Add          | 0.9         |        |          |        |       |  |
| 8b Mult             | 0.2         |        |          |        |       |  |
| 32b Mult            | 3.1         |        |          |        |       |  |
| 16b FP Mult         | 1.1         |        |          |        |       |  |
| 32b FP Mult         | 3.7         |        |          |        |       |  |
| 32b SRAM Read (8KB) | 5           |        |          |        |       |  |
| 32b DRAM Read       | 640         |        |          |        |       |  |
|                     |             | 10     | 100      | 1000   | 10000 |  |

Bill Dally (Stanford), Cadence Embedded Neural Network <u>Summit</u>, February 1, 2017

### **Convolution to Matrix Multiplications**

Motivation: transforming convolution to matrix multiplications with improved data layout/locality

• Step 1: image -> matrix



### **Convolution to Matrix Multiplications**

Motivation: transforming convolution to matrix multiplications with improved data layout/locality

- Step 1: image -> matrix
- Step 2: conv -> matrix mul  $O_{x,y} = \sum_{c=1}^{C} \sum_{v=1}^{R} \sum_{u=1}^{S} D_{c,x+u,y+v} * W_{c,u,v}$



Consider col2im as a row major reshape.



#### A specific matrix multiplication with data reuse opportunities.











#### A Toy Example

- A 2D convolution on a 4x4 image with a filter shape of 2x2
- $O = D \circledast W = A^T [GWG^T] \circ [B^T dB] A$

$$B^{T} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}, G = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{bmatrix}$$
$$A^{T} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

#### Cost of Winograd Algorithm

 $O = D \circledast W = A^T [GWG^T] \circ [B^T DB] A$ 

- *GWG<sup>T</sup>*, *B<sup>T</sup> DB*: only involve constant multiplications, much cheaper than floating point multiplications
- $[GWG^T] \circ [B^TDB]$ : N x N floating point multiplications
- $A^{T}[GWG^{T}] \circ [B^{T}DB]A$ : constant multiplications
- # floating point multiplications =  $N \times N$
- Complexity reduction  $\frac{N^2}{R^2 \times (N-R+1)^2}$  (up to 9 times for 3x3 convolutions)
- What are the other costs of Winograd?

#### **Consistently Outperforms Vanilla Convolutions**

VGG16, batch size = 1, relative performance





# Other Ways to Transform Convolution to Matrix Multiplication?



#### Other Fast Implementation for Conv2Matmul



Conv2Matmul version 1 (Winograd)

Conv2Matmul version 2 (EINNET) 40% faster than Winograd on A100 GPU

EINNET: Optimizing Tensor Programs with Derivation-Based Transformations. Wang et al.

#### Combining WinoGrad with Model Compression

 Issue: transformations for inputs and weights convert sparse activations and weights to dense ones



#### **Sparse-Winograd Convolution**

Standard Winograd

- $S = A^T \times [G \times Prune(g) \times G^T] \circ [B^T \times ReLU(d) \times B] \times A$
- The sparse matrices Prune(g) and ReLU(d) become dense again when transformed to Winograd domain

Sparse-Winograd-ReLU CNN:

- $S = A^T[Prune(GgG^T)] \circ [ReLU(B^TdB)]A$
- Move the pruning and ReLU operations into Winograd to make the results sparse

#### **Sparse-Winograd Convolution**

 Key Idea: move the pruning and ReLU operations into Winograd to make the results sparse



Liu, X; Pool, J; Han, S; Dally, W. Efficient Sparse-Winograd Convolutional Neural Networks. arXiv:1802.06367, 2048 er i + 1

# Sparse Winograd Algorithm Reduces Multiplications by 10x while Maintaining/Improving Accuracy



Top-1 validation accuracy vs density for ResNet-18 on ImageNet

#### Other Techniques to Optimize ML on Hardware

|                     |             | Relative Energy Cost |
|---------------------|-------------|----------------------|
| Operation:          | Energy (pJ) |                      |
| 8b Add              | 0.03        |                      |
| 16b Add             | 0.05        |                      |
| 32b Add             | 0.1         |                      |
| 16b FP Add          | 0.4         |                      |
| 32b FP Add          | 0.9         |                      |
| 8b Mult             | 0.2         |                      |
| 32b Mult            | 3.1         |                      |
| 16b FP Mult         | 1.1         |                      |
| 32b FP Mult         | 3.7         |                      |
| 32b SRAM Read (8KB) | 5           |                      |
| 32b DRAM Read       | 640         |                      |
|                     |             | 1 10 100 1000 10000  |

Memory access is a bottleneck

#### Loop Tiling: Leverage Local Memory for Data Reuse

```
dram float A[n][n], B[n][n], C[n][n];
for (int i = 0; i < n; ++i) {</pre>
  for (int j = 0; j < n; ++j) {</pre>
    register float c = 0;
    for (int k = 0; k < n; ++k) {
      register float a = A[i][k];
      register float b = B[j][k];
      c += a * b;
    }
    C[i][j] = c;
  }
}
```

A's DRAM accesses: n^3 B's DRAM accesses: n^3

#### Loop Tiling: Leverage Local Memory for Data Reuse

```
dram float A[n/v1][n/v3][v1][v3];
dram float B[n/v2][n/v3][v2][v3];
dram float C[n/v1][n/v2][v1][v2];
for (int i = 0; i < n/v1; ++i) {
  for (int j = 0; j < n/v2; ++j) {</pre>
    register float c[v1][v2] = 0;
    for (int k = 0; k < n / v3; ++k) {
      register float a[v1][v3] = A[i][k];
      register float b[v2][v3] = B[j][k];
      c += dot(a, b.T);
    C[i][j] = c;
```



#### **Tiled Matrix Multiplication**

```
dram float A[n/v1][n/v3][v1][v3];
dram float B[n/v2][n/v3][v2][v3];
dram float C[n/v1][n/v2][v1][v2];
for (int i = 0; i < n/v1; ++i) {</pre>
  for (int j = 0; j < n/v2; ++j) {</pre>
    register float c[v1][v2] = 0;
    for (int k = 0; k < n / v3; ++k) {
      register float a[v1][v3] = A[i][k];
      register float b[v2][v3] = B[j][k];
      c += dot(a, b.T);
    }
    C[i][j] = c;
  }
```

A's DRAM accesses: n^3 / v2 B's DRAM accesses: n^3 / v1 A's register cost: v1 \* v3 B's register cost: v2 \* v3 C's register cost: v1 \* v2

26

#### **Common Data Reuse in DNN Computations**



DNN Accelerator Architectures. ISCA Tutorial 2019. Joel Emer et al.

#### Discussions

- Q1: Does the Winograd algorithm work for other linear algebra operators in deep learning, such as depth-wise convolution, transposed convolution?
- Q2: What are the hardware optimizations we should consider to make deep learning faster?

|                     |             | Relative Energy Cost |
|---------------------|-------------|----------------------|
| Operation:          | Energy (pJ) |                      |
| 8b Add              | 0.03        |                      |
| 16b Add             | 0.05        |                      |
| 32b Add             | 0.1         |                      |
| 16b FP Add          | 0.4         |                      |
| 32b FP Add          | 0.9         |                      |
| 8b Mult             | 0.2         |                      |
| 32b Mult            | 3.1         |                      |
| 16b FP Mult         | 1.1         |                      |
| 32b FP Mult         | 3.7         |                      |
| 32b SRAM Read (8KB) | 5           |                      |
| 32b DRAM Read       | 640         |                      |
|                     |             | 1 10 100 1000 10000  |