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Towards Federated Learning at Scale
Google’s FL System
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Why do we need Federated Learning?
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Data is born at the edge

• Billions of phones and IoT devices constantly generating data

• Data can help improve products and services

• How to leverage edge data?
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Traditional On-device Inference with Cloud-Trained Models

• Limitations: compromised privacy, sharing user data can be expensive 
(e.g., videos), centralized data collection
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Federated Learning

• Key idea: allow cross-device models to be trained and evaluated without 
centralized data collection
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Federated Learning: Advantages

• More representative data
• Protected privacy and ownership of data
• Preserved locality of data
• Enables edge devices to collaborate (more aggregated resource)
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“Bring the code to the data and not the data to the code”
---Wolfgang Grieskamp, SysML19
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Federated Learning is Hard

• Health of user devices must not be compromised
• User devices can drop any moment and at high rate
• No direct access to devices for diagnosis
• Large and uneven scale of populations on server side
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Developer Workflow

• Model developers depend on the production system for experiments
• Only have accesses to proxy data but not to real data
• Develop on the cloud and then push the result to production and collect metrics 

• Deployment must never affect the user experience on device
• Training has no visible effect to the user
• Device architecture ensures that device health is not compromised
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Federated Learning Round Protocol
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Federated Learning Round Protocol: Selection

• Devices check in to server to announce 
availability for training, when device state allows

• Charging, unmetered network, idle

• Server makes a random selection of participating 
devices – select a few hundred out of thousands

• Quality doesn’t increase by selecting more than few 
hundred devices

• Server could apply strategies which clients to select
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Federated Learning Round Protocol: Configuration

• Server locks population and reads current model 
weights from persistent storage.

• Server sends model and hyper-parameters to 
devices

• Devices start training as soon as they receive it
• Apply model compression techniques to minimize 

communication overhead
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Federated Learning Round Protocol: Reporting

• When a device finishes training, 
it reports an encrypted model 
update back to the server

• Apply gradient compression 
techniques

• Server aggregates updates as 
they arrive

• Server closes round once seen 
enough reports

• Stragglers reporting after the 
timeout are ignored
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Device Architecture

• Application collects and stores on 
device training examples

• Training is scheduled in separate 
process as a background job

• When device state allows (charging, 
metered network, idle)

• Training will be interrupted if device 
conditions change

• Once started, training checks into 
FL server to obtain model and 
parameters
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Server Architecture

• Coordinator manages a training 
population (approx. a minibatch)

• Selectors are responsible for 
accepting and forwarding device 
connections

• Dynamically configured by the 
coordinator based on operational 
profiles

• Aggregators are spawn when a 
training round is initiated and 
process model gradient updates
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Pace Steering

Problem: Population size varies drastically
• Devices must be idle, plugged-in, on wi-fi to participate
• Device availability correlates with geo location

Solution: Pace Steering
• When a device is rejected for a training round, it gets back a suggested 

time window when to retry
• Server uses retry windows to steer the population pace
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Questions to Discuss

• How to use FL to train large models that cannot fit on edge devices (e.g., 
GPT models)? (Hint: model distillation, mixture-of-experts, etc)

• Compare federated learning with traditional DNN training in the following 
aspects: 

• training data distribution
• data availability
• edge device reliability
• primary bottleneck
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Federated Learning v.s. Conventional DNN Training

Data locality and distribution
• Massively decentralized, naturally arising non-

IID partition
• Centralized training, balanced data

Data availability
• Limited availability, time-of-day variations
• Almost all data nodes always available

Device statefulness
• Stateless (generally no repeat computation)
• Stateful

Device reliability
• Unreliable
• Reliable

Distribution scale
• Massively parallel (up to billions of devices)
• Single datacenter

Primary bottleneck
• Communication
• computation
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