

The library to accelerate training and inference of DNN at scale

Talk @ CMU – 4/18/22

Presented by Minjia Zhang, Principal Researcher @Microsoft (on behalf of the DeepSpeed team)

Model Scale

• 10+ Trillion parameters

SpeedFast & scalable training

Democratize Al

Bigger & faster for all

Compressed TrainingBoosted efficiency

Accelerated inference

• Up to 10x faster & cheaper

Usability

• Few lines of code changes

Evolution of DNN Models

Larger models \rightarrow better accuracy

Model size is still growing

Not reached the accuracy limit yet

More compute-efficient to train larger models than smaller ones to same accuracy

What is a Language Model?

Text Summarization

COPYWRITING	SUMMARIZATION	PARSING UNSTRUCTURED TEXT	CLASSIFICATION	TRANSLATION	
Summarize	e this email into a sir	ngle sentence:			
Dear Olivia,					
The solar energy conference went great. New Horizon Manufacturing wants to meet with us to talk about our photovoltaic window system we're about to launch. I think it would be great to talk this Tuesday.					
Best, Allison					
Allison is excited to meet with New Horizon Manufacturing to discuss their photovoltaic window system.					

Question and Answering

PYWRITING	SUMMARIZATION	PARSING UNSTRUCTURED TEXT	CLASSIFICATION	TRANSLATION
Answer the	following questions	about this customer email.		
Answerthe	following questions	about this oustonier erhall.		
T'm wondei	ring if you could prov	vide me with information about	vour cloud services f	for companies
T'm CTO for	r Moon Door, a movie	production company and wan	t to know if it can be	
different pr	nioota that are in pr	e production company and wan		p us manage our
different pr	ojects that are in pro			
Questions				
Questions:	intruin the compon			
0. What is t	istry is the company	y 		
Z. What su	ne name or the com	ipany		
5. What are	they interested in			
4. What is t	he customer's posit	ion		
Apolyoro				
Answers:				
4 -				
1. The cor	npany is in the m	ovie production industry.		
2. The cor	npany is Moon Doo	pr.		
3. The cus	stomer is interes	ted in cloud services for	companies.	
4. The cus	stomer is the CTO).		

Code Continuation and Generation

```
TEXT TO SQL TRANSLATION CALLING AN API VIA NATURAL LANGUAGE CODE CONTINUATION
   Python 3
   Get the current value of a Bitcoin in US dollars using the bitcoincharts api
   .....
   import requests
   import json
   def get_bitcoin_price():
       url = 'http://api.bitcoincharts.com/v1/weighted_prices.json'
       response = requests.get(url)
       data = json.loads(response.text)
       return data['USD']['7d']
   if name == ' main ':
       print(get_bitcoin_price())
```

Many Other Examples

- Grammar correction
- English to other languages
- SQL translate
- Classification
- Query rewriting
- Conversation bot
- •

Image Generation from Text

ORIGINAL IMAGE

........

DALL · E 2 VARIATIONS

 \rightarrow

• • • • • • • • • • •

DALL·E: Creating Images from Text - OpenAl

Transformers for Language Modeling

[1] Vaswani et al. "Attention Is All You Need", https://arxiv.org/abs/1706.03762, 2018

[2]Devlin et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", 2019, <u>https://arxiv.org/abs/1810.04805</u> [3] Brown et al. "Language Models are Few-Shot Learners", 2020, https://arxiv.org/abs/2005.14165

DL System Challenges

- Too slow to train high-quality models on massive data
 - More hardware ≠ bigger model, higher throughput
 - Higher throughput ≠ better accuracy, faster convergence
 - Better techniques ≠ handy to use
- Slow and expensive to **deploy** the trained models

DL System Desired Capability (3Es)

Efficiency: Efficient use of hardware for high scalability and throughput Effectiveness: High accuracy and fast convergence, lowering cost Easy to use: Improve development productivity of model scientists

Outline

- DeepSpeed library overview
- ZeRO
 - Breaking the memory wall via memory efficient optimizer
- ZeRO-Offload
 - Democratizing DL training via heterogeneous memory
- Software and Usability

System capability to efficiently train models with over **10 trillion** parameters

DeepSpeed key technologies: Zero Redundancy Optimizer (ZeRO), 3D parallelism, ZeRO-Offload, ZeRO-Infinity

Large-scale models trained/in-training using DeepSpeed

- Active involvement of DS team: <u>Z-code MoE</u> 10B, <u>Turing NLG</u> 17B, <u>Big Science LM</u> 200B, <u>MT-NLG</u> 530B
- Independent efforts: <u>GPT-NeoX</u> 175B, <u>Jurassic-1</u> 178B

Usability

Model Scale

• 10+ Trillion parameters

• Few lines of code changes

Fastest Transformer Kernels

#Devices	Source	Training Time
256 V100 GPUs	Nvidia	236 mins
256 V100 GPUs	DeepSpeed	144 mins
1024 TPU3 chips	Google	76 mins
1024 V100 GPUs	Nvidia	67 mins
1024 V100 GPUs	DeepSpeed	44 mins

Scalable distributed training through ZeRO-powered DP

Superlinear speedup with increasing #GPUs

Model Scale10+ Trillion parameters

SpeedFast & scalable training

Democratize Al

• Bigger & faster for all

Compressed Training

Boosted efficiency

Accelerated inference

• Up to 10x faster & cheaper

Usability

• Few lines of code changes

DeepSpeed key technologies

- Efficiency: ZeRO, ultra-fast GPU kernels, IO/compute/communication overlapping
- Effectiveness: Advance HP tuning, large-batch scaling

ZeRO-Offload (GPU + CPU): 13B model on single GPU, 10x

Key technologies:

 Heterogeneous memory, ZeRO-style data parallelism, efficient tensor allocation and migration

ZeRO-Infinity (GPU + CPU + NVMe): 1 Trillion model on a single GPU, 700x bigger

Trainable Model Parameter (Billions)

Model Scale • 10+ Trillion parameters Speed

Fast & scalable training

Democratize Al

Bigger & faster for all

Compressed TrainingBoosted efficiency

Accelerated inference

• Up to 10x faster & cheaper

Usability

• Few lines of code changes

1-bit Adam: 5x less communication, 3.5x faster training

Key technologies: Gradient compression, error compensation

Progressive layer dropping: 2.5X faster pre-training speed to get similar accuracy on downstream tasks

Key technologies: Curriculum-based layer dropping, architecture change

Model Scale10 Trillion parameters

SpeedFast & scalable training

Democratize Al

Bigger & faster for all

Compressed Training

• Boosted efficiency

Accelerated inference

• Up to 6x faster & cheaper

Usability

• Few lines of code changes

Accelerated inference for large-scale transformer models Up to 6x faster and cheaper

Model Scale10+ Trillion parameters

Speed

Democratize Al

Bigger & faster for all

Compressed Training

Boosted efficiency

Accelerated inference

Up to 10x faster & cheaper

Usability

• Few lines of code changes

High performance MoE inference 10x lower MoE inference latency

DeepSpeed key inference technologies:

- Inference optimized kernels
- Inference adapted parallelism
- Effective and flexible quantization for model **compression**
- **MoE-specific** optimizations

- Only few lines of code changes to enable DeepSpeed on PyTorch models
- Scalable and convenient data parallelism

SpeedFast & scalable training

Democratize Al

- Bigger & faster for all
- <u>HuggingFace</u> and <u>PyTorch Lightning</u> integrate DeepSpeed as a performanceoptimized backend

deepspeed	ed examples/pytorch/translation/run_translation.py \				
deepspee	d tests/	deepspeed	/ds_config_zero3.json 🔪		
<pre>model_name_or_path t5-smallper_device_train_batch_size 1 \output_dir output_diroverwrite_output_dirfp16 \</pre>					
<pre>1 trainer = Trainer(gpus=4, plugins='deepspeed', precision=16)</pre>					

deepspeed.py hosted with 💙 by GitHub

view raw

• Infrastructure agnostic, supporting AzureML, Azure VMs, local-nodes

Compressed Training

• Boosted efficiency

Accelerated inference

• Up to 10x faster & cheaper

Usability

• Few lines of code changes

ZeRO

+

0

Breaking the memory wall via memory efficient optimizer

ML/DL Training Problem Definition Recap

- Given model f, data set $\{xi, y_i\}_{i=1}^N$
- Minimize the loss between predicted labels and true labels: $Min \frac{1}{N} \sum_{i=1}^{N} loss(f(x_i, y_i))$
- Common loss function
 - Cross-entropy, MSE (mean squared error)
- Common way to solve the minimization problem
 - Stochastic gradient descent (SGD)
 - Adaptive learning rates optimizers (e.g., Adam)

Gradient Descent

- Model f_w is parameterized by weight w
- $\eta > 0$ is the learning rate

For t = 1 to T $\Delta w = \eta \times \frac{1}{N} \sum_{i=1}^{N} \nabla \left(loss(f_w(x_i, y_i)) \right) // compute derivative and update$ $w \to \Delta w // apply update$ End

Adaptive Learning Rates (Adam)

- Model f_w is parameterized by weight w
- $\eta > 0$ is the learning rate

For t = 1 to T

$$\Delta w = \eta \times \frac{1}{N} \sum_{i=1}^{N} \nabla \left(loss(f_w(x_i, y_i)) \right)$$

$$w = \Delta w // \text{ apply update}$$
End

$$\begin{split} \nu_t &= \beta_1 * \nu_{t-1} - (1 - \beta_1) * g_t \\ s_t &= \beta_2 * s_{t-1} - (1 - \beta_2) * g_t^2 \\ \Delta \omega_t &= -\eta \frac{\nu_t}{\sqrt{s_t + \epsilon}} * g_t \\ \end{split}$$

$$g_t : \text{Gradient at time t along } \omega^j \\ \nu_t : \text{Exponential Average of gradients along } \omega_j \\ s_t : \text{Exponential Average of squares of gradients along } \omega_j \\ \beta_1, \beta_2 : \text{Hyperparameters} \end{split}$$

[1] Kingma and Ba, "Adam: A Method for Stochastic Optimization", 2014, https://arxiv.org/abs/1412.6980

Distributed Gradient Descent

- Model f_w is parameterized by weight w
- $\eta > 0$ is the learning rate

For t = 1 to T $\Delta w = \eta \times \frac{1}{N} \sum_{i=1}^{N} \nabla \left(loss(f_w(x_i, y_i)) \right) // \text{ compute derivative and update}$ $w \to \Delta w // \text{ apply update}$ End

Data Parallelism (DP)

 Partition the training data
 Parallel training on different machines

3. Synchronize the local updates

4. Refresh local model with new parameters, then go to 2

Implemented as standard component in DL training frameworks, such as PyTorch DDP

Distributed Data Parallel Training in GPU Clusters

Large Model Training Challenges

	Bert-		Turing	
	Large	GPT-2	17.2 NLG	GPT-3
Parameters	0.32B	1.5B	17.2B	175B
Layers	24	48	78	96
Hidden Dimension	1024	1600	4256	12288
Relative Computation	1x	4.7x	54x	547x
Memory Footprint	5.12GB	24GB	275GB	2800GB

Large Model Training Challenges

	Bert-		Turing	
	Large	GPT-2	17.2 NLG	GPT-3
Parameters	0.32B	1.5B	17.2B	175B
Layers	24	48	78	96
Hidden Dimension	1024	1600	4256	12288
Relative Computation	1x	4.7x	54x	547x
Memory Footprint	5.12GB	24GB	275GB	2800GB

Out of Memory

NVIDIA V100 GPU memory capacity: 16G/32G NVIDIA A100 GPU memory capacity: 40G/80G

26

A 16-layer transformer model = 1 layer

*<u>Mixed Precision Training</u> (ICLR '18) with Adam Optimizer

Each cell represents GPU memory used by its corresponding transformer layer

*Mixed Precision Training (ICLR '18) with Adam Optimizer

• FP16 parameter

- FP16 parameter
- FP16 Gradients

- FP16 parameter
- FP16 Gradients
- FP32 Optimizer States
 - Gradients, Variance, Momentum, Parameters

- FP16 parameter : 2M bytes
- FP16 Gradients : 2M bytes
- FP32 Optimizer States : 16M bytes
 - Gradients, Variance, Momentum, Parameters

M = number of parameters in the model

Example 1B parameter model -> 20GB/GPU

Memory consumption doesn't include:

Input batch + activations

*<u>Mixed Precision Training</u> (ICLR '18) with Adam Optimizer

- ZeRO removes the redundancy across data parallel process
- Partitioning optimizer states, gradients and parameters (3 stages)

- ZeRO removes the redundancy across data parallel process
- Partitioning optimizer states, gradients and parameters (3 stages)

- ZeRO removes the redundancy across data parallel process
- Partitioning optimizer states, gradients and parameters (3 stages)

Stage 2 (P_{os+g})

ZeRO-DP: ZeRO powered Data Parallelism

- ZeRO removes the redundancy across data parallel process
- Partitioning optimizer states, gradients and parameters (3 stages)

• ZeRO Stage 1

- ZeRO Stage 1
- Partitions optimizer states across GPUs

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and reduce scatter to average

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and reduce scatter to average

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and reduce scatter to average
- Update the FP32 weights with ADAM optimizer

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and reduce scatter to average
- Update the FP32 weights with ADAM optimizer

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and reduce scatter to average
- Update the FP32 weights with ADAM optimizer

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and reduce scatter to average
- Update the FP32 weights with ADAM optimizer

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and reduce scatter to average
- Update the FP32 weights with ADAM optimizer
- Update the FP16 weights

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and reduce scatter to average
- Update the FP32 weights with ADAM optimizer
- Update the FP16 weights
- All Gather the FP16 weights to complete the iteration

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and reduce scatter to average
- Update the FP32 weights with ADAM optimizer
- Update the FP16 weights
- All Gather the FP16 weights to complete the iteration

- ZeRO has three different stages
- Progressive memory savings and communication volume
- Turning NLR 17.2B is powered by Stage 1 and Megatron

ZeRO and Model/Pipeline Parallelism

- ZeRO is model parallelism agnostic
- Can work with any form of model parallelism
 - Tensor Slicing (Megatron[1])
 - Pipeline Parallelism (Gpipe[2], PipeDream[3])

[1] Shoeybi et al., Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, 2019
[2] Huang et al. GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
[3] Harlap et al. PipeDream: Fast and Efficient Pipeline Parallel DNN Training

Large Models Need Parallelism

	Max Parameter (in billions)	Max Parallelism	Compute Efficiency	Usability (Model Rewrite)
Data Parallel (DP)	Approx. 1.2	>1000	Very Good	Great
Model Parallel (MP)	Approx. 20	Approx. 16	Good	Needs Model Rewrite
MP + DP	Approx. 20	> 1000	Good	Needs Model Rewrite
Pipeline Parallel (PP)	Approx. 100	Approx. 128	Very Good	Needs Model Rewrite
PP + DP	Approx. 100	> 1000	Very Good	Needs Model Rewrite
MP + PP + DP	> 1000	> 1000	Very Good	Needs Significant Model Rewrite
ZeRO	> 1000	> 1000	Very Good	Great

ZeRO-Offload

+

0

Democratizing DL training via heterogeneous memory

Billon-Scale Model Training - Scale Out Large Model Training

- Model parallelism (Megatron-LM)
 - Partition the model states vertically across multiple GPUs.
- Pipeline parallelism (PipeDream, SOSP'19)
 - Partition the model states horizontally across layers.
- ZeRO: Zero Redundancy Optimizer (ZeRO, SC'20)
 - Split the training batch across multiple GPUs without model states duplication.

Distributed GPU Cluster

Billon-Scale Model Training - Scale Out Large Model Training

• Split the training batch across multiple GPUs without model states duplication.

Distributed GPU Cluster

Beyond the GPU Memory

- Modern clusters have heterogeneous memory systems.
- GPU memory comprises a small fraction
- Can we extend an existing parallel training technology to use CPU/NVMe memory?

Memory available on a Single DGX-2 Node

ZeRO with CPU Offload

- Store optimizer states in CPU memory instead of GPU
- Send from CPU to GPU
- Broadcast or reduce as ZeRO

- Is CPU \leftarrow \rightarrow GPU bandwidth sufficient?
 - Required bw for efficiency: 25-60 GB/s
 - PCIe peak bw on DGX-2: 32 GB/s

Offload Strategy

- ZeRO-Offload partitions the dataflow graph with:
 - i. Few computation on CPU
 - ii. Minimize of communication volume
 - iii. Maximize memory saving while achieving minimum communication volume

How Does ZeRO-Offload Work?

GPU memory:

- FP16 weight parameters
- Partitioned gradients (ZeRO Stage 2)

How Does ZeRO-Offload Work?

GPU memory:

- FP16 weight parameters
- Partitioned gradients (ZeRO Stage 2)

CPU memory:

- FP32 weight parameters
- Partitioned optimizer states
- Partitioned gradients

ZeRO-Offload data placement

GPU memory:

- FP16 weight parameters
- Partitioned gradients (ZeRO Stage 2)

CPU memory:

- FP32 weight parameters
- Partitioned optimizer states
- Partitioned gradients

ZeRO-Offload data placement

Optimized CPU Execution

- Highly parallelized CPU optimizer implementation
 - 1) SIMD vector instruction for fully exploiting the hardware parallelism supported on CPU architectures.
 - 2) Loop unrolling to increase instruction level parallelism.
 - 3) OMP multithreading for effective utilization of multiple cores and threads on the CPU in parallel.

	Adam Optimizer: Parameter Update Latency (seconds)					
Model Size (B)	PyTorch- CPU	DeepSpeed-CPU	PyTorch-GPU			
1	1.39	0.22	0.10			
2	2.75	0.51	0.26			
4	5.71	1.03	0.64			
8	11.93	2.41	0.87			
10	14.00	2.57	1.00			

Evaluation

• Testbed

DGX-2 node				
GPU	16 NVIDIA Tesla V100 Tensor Core GPUs			
GPU Memory	32GB HBM2 on each GPU			
CPU	2 Intel Xeon Platinum 8168 Processors			
CPU Memory	1.5TB 2666MHz DDR4			
CPU cache	L1, L2, and L3 are 32K, 1M, and 33M, respectively			
PCIe	bidirectional 32 GBps PCIe			

• Baselines

- 1) Pytorch DDP: distributed data parallelism
- 2) Megatron: model parallelism
- 3) ZeRO: extended data parallelism by eliminating memory redundancies across multiple GPUs

Model Scale

ZeRO-Offload enables 13B model training on a single GPU, and easily enables training of up to 70B parameter with 16 GPUs.

Training Throughput – Multiple GPUs

For 1B to 15B models, ZeRO-Offload achieves the highest throughput compared with PyTorch, ZeRO, and Megatron.

Single DGX-2 node (x16 V100-32GB)

Training Throughput – Multiple GPUs

Combined with model parallelism, ZeRO-Offload enables training up to 70B parameter models with more than 30 TFLOPS throughput per GPU. Single DGX-2 node (x16 V100-32GB) 83

Throughput Scalability

ZeRO-Offload achieves near perfect linear speedup in terms of aggregated throughput running at over 30 TFlops per GPU.

Leveraging NVMe

- Leverages GPU/CPU/NVMe memory (ZeRO-Infinity)
 - 1T params on a single node
- GPT-3 can be fine-tuned on a single node

Memory available on a Single DGX-2 Node

Software and Usability

How to install, extend, and use the DeepSpeed library?

+

0

DeepSpeed runs everywhere!

- AzureML, Azure VMs, ...
- On premises hardware including support for both AMD and NVIDIA GPUs.

\leftarrow \rightarrow C d	https://ml.azure.com/experiments/id/839bc9cc-fbbe-406f-b887-a30e04	49d41be/runs/deepspeed-cifar-exam	ple_1606				
Microsoft Azure Machin	e Learning						
≡	bing-quantus > Experiments > deepspeed-cifar-example > Run 65						
+ New	Run 65 🔮 Completed						
Home	🕐 Refresh 🕑 Resubmit 🛞 Cancel		Azure Machine Learning				
Notebooks Automated ML	Details Metrics Images Child runs Outputs + logs Snapshot Explanations (preview) Fairness (preview)						
🖁 Designer	Properties Microsoft Azure Machine Learning						
Assets	Status	=	bing-quantus > Experiment	ts			
Datasets	Completed						
A Experiments	Created Dec 2, 2020, 12:08 PM	INEW	Experiments				
문 Pipelines	Started	🟠 Home					
😚 Models	Dec 2, 2020 12:08 PM	Author	All experiments All runs				
S Endpoints	Duration	Notebooks					
Manage	4m 28.58s	Automated MI	💍 Refresh 🛛 Archive experiment 🛛 💽 View archived experime				
😾 Compute	Compute target						
Datastores	Pup ID	🚠 Designer	· Y Add litter				
🖉 Data Labeling	deepspeed-cifar-example_1606939683_62c68b42	Assets	- · · ·				
	Run number 65 Script name train.py	😡 Datasets	Experiment	Latest run			
		▲ Experiments	deepspeed-cifar-example	65			
		문 Pipelines	cod exp 22				
		🕅 Models	2 -044				

DL Models

DeepSpeed is simple to use

Bert - Original

Construct distributed model
model = BertMultiTask(...)
model = DistributedDataParallel(model)

Construct FP16 optimizer
optimizer = FusedAdam(model_parameters, ...)
optimizer = FP16_Optimizer(optimizer, ...)

Forward pass
loss = model(batch)

 $\mathbf{x}_{i} \in \mathbf{x}_{i}$

Backward pass
optimizer.backward(loss)

Parameter update
optimizer.step()

Bert – w. DeepSpeed

Construct Bert model
model = BertMultiTask(...)

Wrap to get distributed model and FP16 optimizer
model, optimizer, _, _ = deepspeed.initialize(
 args=args,
 model=model,
 model_parameters=model_parameters,
 ...

Forward pass
loss = model(batch)

Backward pass
model.backward(loss)

Paramter update
model.step()

DL Optimizations (DeepSpeed)

DL Framework (e.g., PyTorch, TensorFlow)

DL Infrastructure (e.g., AML, Singularity, ITP, MPI-based platforms)

> Hardware (e.g., GPU/CPU clusters)

> > Minimal code change Efficiency + Effectiveness Speed + Scale

We welcome contributions! Make your first pull request 😳

https://github.com/microsoft/DeepSpeed

www.deepspeed.ai

The DeepSpeed Library and Team Members

- An open-source library to optimize training and inference of DL models at scale
 - <u>https://github.com/microsoft/DeepSpeed</u>
- DeepSpeed team is comprised of researchers and engineers excited about large-scale ML/DL models and large-scale systems

Team members: Minjia Zhang, Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, Shaden Smith, Cheng Li, Conglong Li, Du Li, Elton Zheng, Ammar Ahmad Awan, Jefferey Zhu, Michael Wyatt, Zhewei Yao, Reza Yazdani Aminabadi, Xiaoxia Wu, and Yuxiong He