
Model Scale
• 10+ Trillion parameters

Speed
• Fast & scalable training

Democratize AI
• Bigger & faster for all

Usability
• Few lines of code changes

Compressed Training
• Boosted efficiency

Accelerated inference
• Up to 10x faster & cheaper

The library to accelerate training
and inference of DNN at scale

Talk @ CMU – 4/18/22

Presented by Minjia Zhang, Principal Researcher @Microsoft
(on behalf of the DeepSpeed team)

Evolution of DNN Models

Larger models → better accuracy

Model size is still growing

Not reached the accuracy limit yet

More compute-efficient to train larger
models than smaller ones to same
accuracy

What is a Language Model?

Text Summarization

Question and Answering

Code Continuation and Generation

Many Other Examples

• Grammar correction

• English to other languages

• SQL translate

• Classification

• Query rewriting

• Conversation bot

• …

Image Generation from Text

DALL·E: Creating Images from Text - OpenAI

https://openai.com/blog/dall-e/

[1] Vaswani et al. “Attention Is All You Need”, https://arxiv.org/abs/1706.03762, 2018
[2]Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, 2019, https://arxiv.org/abs/1810.04805
[3] Brown et al. “Language Models are Few-Shot Learners”, 2020, https://arxiv.org/abs/2005.14165

Transformers for Language Modeling

BERT GPT

[1] [2] [3]

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805

DL System Challenges

• Too slow to train high-quality models on massive data
• More hardware ≠ bigger model, higher throughput

• Higher throughput ≠ better accuracy, faster convergence

• Better techniques ≠ handy to use

• Slow and expensive to deploy the trained models

10

Efficiency: Efficient use of hardware for high scalability and throughput
Effectiveness: High accuracy and fast convergence, lowering cost
Easy to use: Improve development productivity of model scientists

DL System Desired Capability (3Es)

Outline

• DeepSpeed library overview

• ZeRO
• Breaking the memory wall via memory efficient optimizer

• ZeRO-Offload
• Democratizing DL training via heterogeneous memory

• Software and Usability

System capability to efficiently train models with over 10 trillion parameters

DeepSpeed key technologies: Zero Redundancy Optimizer (ZeRO), 3D parallelism, ZeRO-Offload, ZeRO-
Infinity

Large-scale models trained/in-training using DeepSpeed

• Active involvement of DS team: Z-code MoE 10B, Turing NLG 17B, Big Science LM 200B, MT-NLG 530B

• Independent efforts: GPT-NeoX 175B, Jurassic-1 178B

Model Scale
• 10+ Trillion parameters

Speed
• Fast & scalable training

Democratize AI
• Bigger & faster for all

Usability
• Few lines of code changes

Compressed Training
• Boosted efficiency

Accelerated inference
• Up to 6x faster & cheaper

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ZeRO-Infinity

3D parallelism / ZeRO-3

ZeRO-2

ZeRO-1

Tensor Slicing

Data parallel

Model Size - Trillions of Parameters

30 trillion parameters on 512 GPUs / 32 DGX nodes, 50x larger

1T

200B

100B

20B

1.4B

12

https://www.microsoft.com/en-us/research/blog/deepspeed-powers-8x-larger-moe-model-training-with-high-performance/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://bigscience.huggingface.co/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://github.com/EleutherAI/gpt-neox
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf

Fastest Transformer Kernels

World Fastest BERT Training

#Devices Source Training Time

256 V100 GPUs Nvidia 236 mins

256 V100 GPUs DeepSpeed 144 mins

1024 TPU3 chips Google 76 mins

1024 V100 GPUs Nvidia 67 mins

1024 V100 GPUs DeepSpeed 44 mins

Scalable distributed training
through ZeRO-powered DP

Superlinear speedup with
increasing #GPUs

DeepSpeed key technologies
o Efficiency: ZeRO, ultra-fast GPU kernels, IO/compute/communication overlapping
o Effectiveness: Advance HP tuning, large-batch scaling

Model Scale
• 10+ Trillion parameters

Speed
• Fast & scalable training

Democratize AI
• Bigger & faster for all

Usability
• Few lines of code changes

Compressed Training
• Boosted efficiency

Accelerated inference
• Up to 10x faster & cheaper

13

ZeRO-Infinity (GPU + CPU + NVMe): 1 Trillion model on a
single GPU, 700x bigger

1000

70

20

20

13

1.4

0 100 200 300 400 500 600 700 800 900 1000

ZeRO-Infinity (NVMe)

ZeRO-Infinity (CPU)

3D Parallelism

ZeRO Stage 3

ZeRO Offload

Data Parallel

Trainable Model Parameter (Billions)

Model Scale
• 10+ Trillion parameters

Speed
• Fast & scalable training

Democratize AI
• Bigger & faster for all

Usability
• Few lines of code changes

Compressed Training
• Boosted efficiency

Accelerated inference
• Up to 10x faster & cheaper

14

13

1.3

0 5 10 15

ZeRO-offload

PyTorch

Model size (billion parameters)

ZeRO-Offload (GPU + CPU): 13B model on single GPU, 10x
bigger

Key technologies:
o Heterogeneous memory, ZeRO-style data parallelism, efficient tensor allocation and

migration

Progressive layer dropping: 2.5X faster pre-training speed
to get similar accuracy on downstream tasks

Key technologies: Curriculum-based layer dropping, architecture change

1-bit Adam: 5x less communication, 3.5x faster training

0 1 2 3 4 5

Adam

1-bit Adam

Communication volume

15

Model Scale
• 10 Trillion parameters

Speed
• Fast & scalable training

Democratize AI
• Bigger & faster for all

Usability
• Few lines of code changes

Compressed Training
• Boosted efficiency

Accelerated inference
• Up to 6x faster & cheaper

Key technologies: Gradient compression, error compensation

16

DeepSpeed key inference technologies:
o Inference optimized kernels

o Inference adapted parallelism

o Effective and flexible quantization for model
compression

o MoE-specific optimizations

Accelerated inference for large-scale transformer models

Up to 6x faster and cheaper

Model Scale
• 10+ Trillion parameters

Speed
• Fast & scalable training

Democratize AI
• Bigger & faster for all

Usability
• Few lines of code changes

Compressed Training
• Boosted efficiency

Accelerated inference
• Up to 10x faster & cheaper

• Only few lines of code changes to enable DeepSpeed on PyTorch models

• Scalable and convenient data parallelism

• HuggingFace and PyTorch Lightning integrate DeepSpeed as a performance-
optimized backend

17

Model Scale
• 10+ Trillion parameters

Speed
• Fast & scalable training

Democratize AI
• Bigger & faster for all

Usability
• Few lines of code changes

Compressed Training
• Boosted efficiency

Accelerated inference
• Up to 10x faster & cheaper

1T

1.4B

0 100 200 300 400 500 600 700 800 900 1000

ZeRO-Powered

PyTorch DP

Trainable Model Parameters (Billions)

Training Massive Models without requiring model parallelism

• Infrastructure agnostic, supporting AzureML, Azure VMs, local-nodes

https://huggingface.co/blog/zero-deepspeed-fairscale
https://medium.com/pytorch/pytorch-lightning-v1-2-0-43a032ade82b

ZeRO
Breaking the memory wall via memory efficient optimizer

ML/DL Training Problem Definition Recap

• Given model f, data set {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑁

• Minimize the loss between predicted labels and true labels:

Min
1

𝑁
σ𝑖=1
𝑁 𝑙𝑜𝑠𝑠(𝑓 𝑥𝑖, 𝑦𝑖)

• Common loss function
• Cross-entropy, MSE (mean squared error)

• Common way to solve the minimization problem
• Stochastic gradient descent (SGD)

• Adaptive learning rates optimizers (e.g., Adam)

Gradient Descent

• Model fw is parameterized by weight w

• η > 0 is the learning rate

For t = 1 to T

∆w = η x
1

𝑁
σ𝑖=1
𝑁 ∇ 𝑙𝑜𝑠𝑠 𝑓𝑤 𝑥𝑖, 𝑦𝑖 // compute derivative and update

w -= ∆w // apply update

End

Forward passBackward pass

Adaptive Learning Rates (Adam)

• Model fw is parameterized by weight w

• η > 0 is the learning rate

For t = 1 to T

∆w = η x
1

𝑁
σ𝑖=1
𝑁 ∇ 𝑙𝑜𝑠𝑠 𝑓𝑤 𝑥𝑖, 𝑦𝑖

w -= ∆w // apply update

End

[1] Kingma and Ba, “Adam: A Method for Stochastic Optimization”, 2014, https://arxiv.org/abs/1412.6980

[1]

Distributed Gradient Descent

• Model fw is parameterized by weight w

• η > 0 is the learning rate

For t = 1 to T

∆w = η x
1

𝑁
σ𝑖=1
𝑁 ∇ 𝑙𝑜𝑠𝑠 𝑓𝑤 𝑥𝑖, 𝑦𝑖 // compute derivative and update

w -= ∆w // apply update

End

Can be parallelized

Data Parallelism (DP)

1. Partition the training data

2. Parallel training on different
machines

3. Synchronize the local
updates

4. Refresh local model with
new parameters, then go to 2

23

Implemented as standard component in DL training
frameworks, such as PyTorch DDP

Distributed Data Parallel Training in GPU Clusters

Intranode Interconnect Intranode Interconnect

Intranode Interconnect Intranode Interconnect

Internode Interconnect

Forward
Propagation

Backward
Propagation

Compute
Optimizer

Specific
Updates

Mini-Batch

Model

Loss

Average
Gradients

Updates

Apply Updates

24Distributed GPU ClusterData Parallel Training Loop

Bert-
Large GPT-2

Turing
17.2 NLG GPT-3

Parameters 0.32B 1.5B 17.2B 175B

Layers 24 48 78 96

Hidden Dimension 1024 1600 4256 12288

Relative Computation 1x 4.7x 54x 547x

Memory Footprint 5.12GB 24GB 275GB 2800GB

25

Large Model Training Challenges

Bert-
Large GPT-2

Turing
17.2 NLG GPT-3

Parameters 0.32B 1.5B 17.2B 175B

Layers 24 48 78 96

Hidden Dimension 1024 1600 4256 12288

Relative Computation 1x 4.7x 54x 547x

Memory Footprint 5.12GB 24GB 275GB 2800GB

26

Large Model Training Challenges

NVIDIA V100 GPU memory capacity: 16G/32G
NVIDIA A100 GPU memory capacity: 40G/80G

Out of Memory

GPU0

Data0

GPU1

Transformer stack Transformer stack
Data1

Understanding Memory Consumption

27

A 16-layer transformer model = 1 layer

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

https://arxiv.org/pdf/1710.03740.pdf

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

Each cell represents GPU memory used by its corresponding transformer layer

28

Understanding Memory Consumption

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

https://arxiv.org/pdf/1710.03740.pdf

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

• FP16 parameter

FP16 ParametersFP16 Parameters

29

Understanding Memory Consumption

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

https://arxiv.org/pdf/1710.03740.pdf

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1 FP16 Parameters

FP16 Gradient
FP16 Parameters
FP16 Gradient

• FP16 parameter
• FP16 Gradients

30

Understanding Memory Consumption

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

https://arxiv.org/pdf/1710.03740.pdf

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1 FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

• FP16 parameter
• FP16 Gradients
• FP32 Optimizer States

• Gradients, Variance, Momentum, Parameters

31

Understanding Memory Consumption

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

https://arxiv.org/pdf/1710.03740.pdf

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1 FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

• FP16 parameter : 2M bytes
• FP16 Gradients : 2M bytes
• FP32 Optimizer States : 16M bytes

• Gradients, Variance, Momentum, Parameters

M = number of parameters in the model

32

Understanding Memory Consumption

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

Example 1B parameter model -> 20GB/GPU

Memory consumption doesn’t include:
• Input batch + activations

https://arxiv.org/pdf/1710.03740.pdf

ZeRO-DP: ZeRO powered Data Parallelism

• ZeRO removes the redundancy across data parallel process

• Partitioning optimizer states, gradients and parameters (3 stages)

33

• ZeRO removes the redundancy across data parallel process

• Partitioning optimizer states, gradients and parameters (3 stages)

34

ZeRO-DP: ZeRO powered Data Parallelism

• ZeRO removes the redundancy across data parallel process

• Partitioning optimizer states, gradients and parameters (3 stages)

35

Stage 1 (Pos)
• Compute gradients on

different data
• Average Gradients

ZeRO-DP: ZeRO powered Data Parallelism

• ZeRO removes the redundancy across data parallel process

• Partitioning optimizer states, gradients and parameters (3 stages)

36

Stage 2 (Pos+g)
• Compute gradients on

different data
• Average Gradients

ZeRO-DP: ZeRO powered Data Parallelism

• ZeRO removes the redundancy across data parallel process

• Partitioning optimizer states, gradients and parameters (3 stages)

37

Stage 3 (Pos+g+p)
• Compute gradients on

different data
• Average Gradients

ZeRO-DP: ZeRO powered Data Parallelism

Data0

Transformer stack

Activations

Transformer stack

Activations

Data1

• ZeRO Stage 1

GPU0 GPU1

ZeRO: Zero Redundancy Optimizer

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients

Animation by Alec Berntson

ZeRO: Zero Redundancy Optimizer

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and reduce scatter to average

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and reduce scatter to average

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and reduce scatter to average
• Update the FP32 weights with ADAM optimizer

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and reduce scatter to average
• Update the FP32 weights with ADAM optimizer

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and reduce scatter to average
• Update the FP32 weights with ADAM optimizer

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and reduce scatter to average
• Update the FP32 weights with ADAM optimizer

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and reduce scatter to average
• Update the FP32 weights with ADAM optimizer
• Update the FP16 weights

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and reduce scatter to average
• Update the FP32 weights with ADAM optimizer
• Update the FP16 weights
• All Gather the FP16 weights to complete the iteration

Animation by Alec Berntson

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO: Zero Redundancy Optimizer

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and reduce scatter to average
• Update the FP32 weights with ADAM optimizer
• Update the FP16 weights
• All Gather the FP16 weights to complete the iteration

Animation by Alec Berntson

ZeRO: Zero Redundancy Optimizer

• ZeRO has three different stages
• Progressive memory savings and communication volume
• Turning NLR 17.2B is powered by Stage 1 and Megatron

Reduction

1x

4x

8x

Nx

MaxSize

1.2/20B

6/100B

12/200B

>1T

Stage 1

Stage 2

Stage 3

ZeRO and Model/Pipeline Parallelism

• ZeRO is model parallelism agnostic

• Can work with any form of model
parallelism
• Tensor Slicing (Megatron[1])

• Pipeline Parallelism (Gpipe[2], PipeDream[3])

[1] Shoeybi et al., Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, 2019
[2] Huang et al. GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
[3] Harlap et al. PipeDream: Fast and Efficient Pipeline Parallel DNN Training

Large Models Need Parallelism
Max Parameter

(in billions)
Max Parallelism

Compute
Efficiency

Usability
(Model Rewrite)

Data Parallel (DP) Approx. 1.2 >1000 Very Good Great

Model Parallel (MP) Approx. 20 Approx. 16 Good Needs Model Rewrite

MP + DP Approx. 20 > 1000 Good
Needs Model Rewrite

Pipeline Parallel (PP) Approx. 100 Approx. 128 Very Good Needs Model Rewrite

PP + DP Approx. 100 > 1000 Very Good Needs Model Rewrite

MP + PP + DP > 1000 > 1000
Very Good Needs Significant Model

Rewrite

ZeRO > 1000 > 1000 Very Good Great

ZeRO-Offload
Democratizing DL training via heterogeneous memory

Billon-Scale Model Training - Scale Out Large
Model Training

Internode Interconnect Internode Interconnect

Internode Interconnect Internode Interconnect

Intranode Interconnect

Distributed GPU Cluster

• Model parallelism (Megatron-LM)

• Partition the model states vertically across multiple
GPUs.

• Pipeline parallelism (PipeDream, SOSP’19)

• Partition the model states horizontally across
layers.

• ZeRO: Zero Redundancy Optimizer (ZeRO, SC’20)

• Split the training batch across multiple GPUs
without model states duplication.

66

Billon-Scale Model Training - Scale Out Large
Model Training

Internode Interconnect Internode Interconnect

Internode Interconnect Internode Interconnect

Intranode Interconnect

Distributed GPU Cluster

• Model parallelism (Megatron-LM)
• Partition the model states vertically across multiple

GPUs.

• Pipeline parallelism (PipeDream, SOSP’19)
• Partition the model states horizontally across

layers.

• ZeRO: Zero Redundancy Optimizer (ZeRO,
SC’19)
• Split the training batch across multiple GPUs

without model states duplication.

67

Require multiple GPUs resources

Beyond the GPU Memory

• Modern clusters have
heterogeneous memory systems.

• GPU memory comprises a small
fraction

• Can we extend an existing parallel
training technology to use
CPU/NVMe memory?

Memory available on a Single DGX-2 Node

68

ZeRO with CPU Offload

• Store optimizer states in CPU memory instead
of GPU

• Send from CPU to GPU
• Broadcast or reduce as ZeRO

• Is CPU→ GPU bandwidth sufficient?
• Required bw for efficiency: 25-60 GB/s
• PCIe peak bw on DGX-2: 32 GB/s

69

Offload Strategy

• ZeRO-Offload partitions the dataflow graph with:

i. Few computation on CPU

ii. Minimize of communication volume

iii. Maximize memory saving while achieving minimum communication volume

70

How Does ZeRO-Offload Work?

Partition optimizer states, gradients

CPU memory:
- Partitioned gradients
- Partitioned optimizer states
- FP32 weight parameters

GPU memory:
- FP16 weight parameters
- Partitioned gradients (ZeRO

Stage 2)

How Does ZeRO-Offload Work?

Partition optimizer states, gradients

GPU memory:
- FP16 weight parameters
- Partitioned gradients (ZeRO

Stage 2)

CPU memory:
- FP32 weight parameters
- Partitioned optimizer states
- Partitioned gradients

How Does ZeRO-Offload Work?

Partition optimizer states, gradients

GPU memory:
- FP16 weight parameters
- Partitioned gradients (ZeRO

Stage 2)

CPU memory:
- FP32 weight parameters
- Partitioned optimizer states
- Partitioned gradients

How Does ZeRO-Offload Work?

How Does ZeRO-Offload Work?

g offload

How Does ZeRO-Offload Work?

g offload

How Does ZeRO-Offload Work?

p swapg offload

How Does ZeRO-Offload Work?

p swapg offload

Optimized CPU Execution

• Highly parallelized CPU optimizer
implementation

1) SIMD vector instruction for fully
exploiting the hardware parallelism
supported on CPU architectures.

2) Loop unrolling to increase
instruction level parallelism.

3) OMP multithreading for effective
utilization of multiple cores and
threads on the CPU in parallel.

79

Adam Optimizer: Parameter Update
Latency (seconds)

Model
Size (B)

PyTorch-
CPU DeepSpeed-CPU PyTorch-GPU

1 1.39 0.22 0.10

2 2.75 0.51 0.26

4 5.71 1.03 0.64

8 11.93 2.41 0.87

10 14.00 2.57 1.00

Evaluation

• Testbed

• Baselines
1) Pytorch DDP: distributed data parallelism

2) Megatron: model parallelism

3) ZeRO: extended data parallelism by eliminating memory redundancies
across multiple GPUs

80

Model Scale

81

ZeRO-Offload enables 13B model training on a single GPU, and
easily enables training of up to 70B parameter with 16 GPUs.

1.4 1.41.4
8

1.4

1513

70

0

20

40

60

80

1-GPU 16-GPU

M
o

d
el

 s
iz

e
(b

ill
io

n
 p

ar
am

et
er

s)

PyTorch ZeRO Megatron ZeRO-Offload

Training Throughput – Multiple GPUs

82

For 1B to 15B models, ZeRO-Offload achieves the highest
throughput compared with PyTorch, ZeRO, and Megatron.

Single DGX-2 node (x16 V100-32GB)

Training Throughput – Multiple GPUs

83

Combined with model parallelism, ZeRO-Offload enables training up
to 70B parameter models with more than 30 TFLOPS throughput per
GPU. Single DGX-2 node (x16 V100-32GB)

Throughput Scalability

84

ZeRO-Offload achieves near perfect linear speedup in terms of
aggregated throughput running at over 30 TFlops per GPU.

Leveraging NVMe

• Leverages GPU/CPU/NVMe
memory (ZeRO-Infinity)
• 1T params on a single node

• GPT-3 can be fine-tuned on a
single node

Memory available on a Single DGX-2 Node

Model Size on a Single DGX-2 Node

GPU Only

CPU + GPU

NVMe+CPU+GPU

85

Software and Usability
How to install, extend, and use the DeepSpeed library?

• AzureML, Azure VMs, …

• On premises hardware including support for both AMD and NVIDIA GPUs.

DeepSpeed runs everywhere!

DeepSpeed is simple to use

Minimal code
change

Efficiency +
Effectiveness

Speed + Scale

Bert - Original Bert – w. DeepSpeed

88

DL Models

DL Optimizations
(DeepSpeed)

DL Framework
(e.g., PyTorch, TensorFlow)

DL Infrastructure
(e.g., AML, Singularity, ITP, MPI-based platforms)

Hardware
(e.g., GPU/CPU clusters)

Thank You!

We welcome contributions! Make your first pull request ☺

https://github.com/microsoft/DeepSpeed

www.deepspeed.ai

https://github.com/microsoft/DeepSpeed

The DeepSpeed Library and Team Members

• An open-source library to optimize training and inference of DL
models at scale
• https://github.com/microsoft/DeepSpeed

• DeepSpeed team is comprised of researchers and engineers excited
about large-scale ML/DL models and large-scale systems

Team members: Minjia Zhang, Samyam Rajbhandari, Jeff Rasley, Olatunji
Ruwase, Shaden Smith, Cheng Li, Conglong Li, Du Li, Elton Zheng, Ammar
Ahmad Awan, Jefferey Zhu, Michael Wyatt, Zhewei Yao, Reza Yazdani
Aminabadi, Xiaoxia Wu, and Yuxiong He

https://github.com/microsoft/DeepSpeed

