
Polarized Subtyping
Thesis Proposal 
PhD in Software Engineering 

Committee Members 
Prof. Frank Pfenning (chair), 

Prof. Jan Hoffmann, 
Prof. Jonathan Aldrich, 

Prof. Ronald Garcia (UBC)

Zeeshan Lakhani 
August 16th, 2024 

1 PM - 4 PM 
GHC 6501

Choices made in programming language and type system design 
involve tradeoffs between safety, simplicity, extensibility, and 
usability. Extensible features centered on type structure, like 
subtyping or mixing evaluation regime (lazy/eager) in functional 
programming, are often avoided or aborted due to the 
complexity of efficient type inference or the need for additional 
syntactic layers. Mainstream languages like TypeScript forsake 
soundness to capture typing scenarios for all of JavaScript and its 
now lengthy history of existent programs. 

In this thesis, we introduce Polarized Subtyping, a flexible 
structural subtyping system grounded in the call-by-push-value 
paradigm, separating the language of types into two layers: a 
positive layer characterized by inductively defined, eagerly 
evaluated, observable values and a negative layer characterized 
by coinductively defined, lazily evaluated, possibly infinite 
computations---with adjoint modalities (or shifts) mediating 
between them. We extend the underlying call-by-push-value 
calculus with a decidable equirecursive subtyping variant that is 
both structural and semantic, forming a higher-order type 
system combining unfettered recursion, variant and lazy records, 
consequential property types like intersections, unions, and type 
difference, and (eventually) parametric polymorphism with 
subtyping and the interaction with effects at the heart of all 
these constructs. 

Our approach moves beyond the traditional confines of syntactic 
type soundness by championing a semantic characterization of 
typing with step-indexing to capture the observation depth of 
recursive computations, from which we can immediately derive a 
form of semantic subtyping. This approach offers advantages in 
understanding complex type system features and maintaining 
behavioral safety when encountering varying evaluation regimes, 
nontermination, and computational effects. 

Being explicit about values and computations while making 
subtyping first-class in our system opens up new possibilities for 
reasoning about the properties of functional programs and how 
type structure affects subtyping relations and enables 
compilation optimizations. Furthermore, to make the system 
practical, we present Polite, a reference implementation that 
demonstrates the feasibility of our approach. Polite gives us a 
platform to experiment with various type system features and 
optimizations in the future.

Abstract

σ
τ


