align box 10-601 Machine Learning (Fall 2010) align box

Course Instructor: Ziv-Bar Joseph
School of Computer Science, Carnegie Mellon University


Course Schedule

Note: handouts, recitation slides and homeworks will be posted prior to the corresponding lectures.
 
Date Lecture Readings Handouts NB
Mon 8/23 Intro to ML and probability
Slides
Mon 8/23 Distributions recitation
Slides
By Le
Wed 8/25 Density estimation, classification theory Chap 2.0-2.1 and 2.3-2.3.1 (Bishop)
Slides

Mon 8/30 Classification Chap 1.5 and 2.5.2 (Bishop)
Slides

Mon 8/30 Matlab recitation 1
Crib sheet (by Jialong He @ tiger.la.asu.edu)
Tutorial
By Le
Wed 9/1 Bayes and Naive Bayes classifiers
Chap 1.5 (Bishop)
Slides
PS1
Dataset for PS1
PS1 out
Mon 9/6 No class


Labor day
Wed 9/8 No class: Matlab recitation 2 in class during class hours
Slides
By Le
Mon 9/13 Linear regression
Chap 3 and 3.1 (Bishop)
Slides

Mon 9/13 Recitation on PS1
Slides
By Le
Wed 9/15 Logistic regression
Chap 4.3 (Bishop)
Slides
PS2
Dataset for PS2
PS1 due and PS2 out
Mon 9/20 Decision trees
Slides

Mon 9/20 Recitation
Slides
By Gitter
Wed 9/22 Boosting Chap 14.3 (Bishop)
Slides

Mon 9/27 Learning theory 1 Chap 7 (Mitchell)
Slides

Mon 9/27 Recitation on PS2
Slides
By Gitter
Wed 9/29 Learning theory 2 Chap 7 (Mitchell)
Slides
PS3
Dataset for PS3
PS2 due and PS3 out
Mon 10/4 Neural Networks Chap 4 (Mitchell) Chap 5, 5.2.3, 5.3 (Bishop)
Slides

Mon 10/4 Recitation
Slides
Cribsheet on learning theory
By Xu
Wed 10/6 SVM Chap 7.1 (Bishop)
Slides

Mon 10/11 SVM (continued)
Slides

Mon 10/11 Recitation on PS3
Slides
Bayes notes
By Xu
Wed 10/13 Hierarchical clustering Chap 9.0-9.2 (Bishop)
Slides
PS4
Dataset for PS4
PS3 due and PS4 out
Mon 10/18 Kmeans and Gaussian mixtures Chap 9.0-9.2 (Bishop)
Slides

Mon 10/18 Recitation
Slides
By Le
Wed 10/20 Model selection, feature selection
Slides
Project proposal due
Mon 10/25 ML in industry 1
Slides

Mon 10/25 Recitation on PS4
Slides
By Le
Wed 10/27 ML in industry 2
Slides
PS4 due
Mon 11/1 Bayesian networks Chap 8.1, 8.2.2 (Bishop)
Slides

Mon 11/1 Mid-term Recitation
Slides

Wed 11/3 Mid-term exam

Mid-term
Mon 11/8 Bayesian networks 2
Slides
PS5
PS5 out
mid-term solutions
Mon 11/8 Recitation
Slides
By Gitter
Wed 11/10 Hidden Markov model 1
Slides
Project progress report due
Mon 11/15 Hidden Markov model 2 (structure learning)
Slides

Mon 11/15 Recitation on PS5
Slides
By Gitter
Wed 11/17 Principal components analysis, singular value decomposition
Slides

Mon 11/22 Markov decision process
Slides
PS5 due
Wed 11/24 No class

Thanksgiving
Mon 11/29 Semi-supervised learning
Slides

Wed 12/1 Computational biology
Slides
Poster session (NSH Atrium)