Course Policies

Caveat emptor: this document is a draft and subject to change until the first day of classes.

Grading

There will be one in-class midterm, two in-class quarterly exams, and a final during the finals period. There will also be 7 homework assignments and a collection of short online quizzes. The 7 homework assignments will alternate between written assignments that you are to do on your own and oral presentation assignments that you will do in groups of three.
4 Written Homeworks20% (5% each)
3 Oral Homeworks15% (5% each)
Online Quizzes+Reci+Bonus15% (see below)
Quarterly exams (in class)10% (5% each)
Midterm exam (in class)15%
Final exam25%

Recitations

  • Everyone is expected to go to their recitation section. Recitations are a chance to engage in more discussion than is usually possible in a large lecture, with a focus on the process of solving algorithmic problems. Recitations will occasionally contain new material as well, on which you may be tested.
  • Recitations are also your chance to earn easy points (see "online quizzes+recitation+bonus" below).

Exams

  • There will be two quarterly exams, one midterm, and one final exam
  • Quarterlies and Midterm will be offered in class
  • Quarterlies will be 30 min long and the midterm will take the full class period.

Online Quizzes

  • There will an online quiz most weeks, for a total of 12.
  • You will be tested on the material from the previous 2-3 lectures.
  • Quizzes are designed to be easy, assuming you are keeping up with the lectures.

Online Quizzes+Recitation+Bonus

  • 15% of your grade is allocated to "Online Quizzes + Recitation + Bonus". This works as follows. Each quiz is worth 1 point. Attending recitation is worth 0.4 points. We will occasionally give out bonus problems worth 1-3 points. We total them up and cap at 15. E.g., the easiest way to get full credit is to attend all 15 recitations (for a total of 6 points) and get an average of 75% on the 12 quizzes.

Homeworks

There will be written homeworks and oral presentations, described below.

Written HWs

  • You should work on written homeworks by yourself. If you have questions, come to office hours. Or, post on Piazza for clarification questions.
  • All written homeworks should be submitted electronically via gradescope. Homeworks will be due at 11:59PM on their due date. See this page for instructions.
  • Typed homework is not required, but strongly encouraged. It is your responsibility to make sure your handin is legible, and typesetting can help with that. LaTeX (see Miktex for Windows machines) is a good typesetting system for documents with lots of math; you probably know it from taking 15-251. (LaTeX guide by Adam Blank.) Here is a Latex template for Hwks. You can customize it as you like.
  • You will lose points for late submissions. Up to 24 hours late: 10 points off. 24-48 hours late: 20 points off. If you want to submit more than 48 hours late, you will lose 75 points. Moreover, you cannot submit electronically after 48 hours, and must contact your TA to submit. At this point solutions will be posted and you may look at them, though anything handed in should be put into your own words
  • Each individual student has two (2) mercy days over the course of the semester to extend the deadline for written homeworks.
  • If you use any reference or webpage or material from any other class (including past iterations of 451), you must cite it.

Oral HWs

  • The oral-presentation homeworks will be done in groups of three. Each of these assignments will consist of three problems. The members of your group will work together to solve the problems -- so here, collaboration is required. You will then present your solutions, as a group, to one of the course staff.
  • Presentations will be given in 1-hour time slots (there will be an electronic sign-up sheet reachable from the course home page). At the presentation, each member of the group will spend 15 minutes presenting one of the problems. The instructor/TA will decide who presents which problem, but when one member is presenting, other members are allowed to chime in too. In the end, the three presentations together will determine the score for the group. However, we reserve the right to give different members different scores when we believe it is warranted.
  • If you are nervous about your presentation, you may in addition hand in a written sketch of your solution as well. We will then take this writeup into consideration in determining your grade on the assignment.

Solving the Homework

Ideally, this is how you should approach the homework.
  1. Read the material taught in class, and make sure you understand all the definitions, algorithms, theorems and proofs.
  2. Read the homework problem. Carefully.
  3. If you get stuck, here are some suggestions to get past it:
    • Come up with a small example, and see how you would solve that. This is particularly helpful when you're trying to follow an algorithm, or when devising a counter example.
    • Which algorithms / techniques / heuristics taught in class are applicable to the problem at hand? When do they fail and for what reason?
    • Reduce the problem to a problem taught in class. Can the problem be represented as tree? a graph? a flow network? maybe to a less general instance of the problem itself (a graph with negative weight to a graph with unique, non-negative weights)?
    • The notion of sub-problem (divide-and-conquer, dynamic programming, induction) is a recurring theme in this class. Try to identify and solve the sub-problems of the problem at hand.
    • If you are still stuck, come to office hours. Sometimes just a brief meeting can get you pointed in the right direction (or help to back you up from a wrong path, to use a DFS analogy).
  4. When you write down your solution, re-read what you've written. Is the solution understandable? Does it answer specifically what you've been asked about? Your answers should be clear, and often they will be short.

Bboards:

  • We will be using Piazza for online discussions and course announcements.
  • For almost all questions related to the class, it makes sense to use Piazza instead of email. It is faster: you can get a response to your questions from any of the staff members or even from your classmates, instead of waiting for the staff member you emailed. Also, your queries (and their answers) can help your classmates who have the same questions.
  • Make sure you don't post questions to piazza that give away solutions (or even give hints).

Textbooks:

  • We will provide lecture notes covering all the material in this course, but we would like you to have a book to give you more detailed coverage (as well as an alternative perspective if you find our own confusing!). We recommend you get one of the following:
    • Introduction to Algorithms, by Cormen, Leiserson, Rivest, and Stein (hereafter referred to as "CLRS"). It's big, it's fairly expensive, but it is the gold standard of algorithms books with a lot of material. Based on the Algorithms course at MIT.
    • Algorithms, by Dasgupta, Papadimitriou, and Vazirani (herafter referred to as "DPV"). Smaller, cheaper, more informal. A relatively new book based on Algorithms courses at UC Berkeley and UCSD. A preliminary (incomplete) version is available here.
  • Specific readings in CLRS and DPV will be listed on the course schedule. It is recommended that you skim the reading before lecture, with a more thorough read afterwards.
  • Other helpful material can be found in: Algorithm Design by J. Kleinberg and E. Tardos, Data Structures and Network Algorithms by R. E. Tarjan, Randomized Algorithms by Motwani and Raghavan, Programming Pearls by J. Bentley, Introduction to Algorithms: a Creative Approach by U. Manber, and the classic Aho-Hopcroft-Ullman book. See also some excellent lecture notes by Jeff Erickson at UIUC.

Other Policies

Lateness and Absence

  • Make-ups for the exams and the final must be arranged at least one week in advance, barring extreme situations. Make sure to document any health problems you might have. If you need special accommodations, please contact Prof. Blum or Prof. Gupta as early as possible.

Academic Integrity


Finally, feel free to contact any member of the course staff to clarify these policies.