next up previous
Next: Partial ordering of OMPs Up: Order-of-magnitude preferences (OMPs) Previous: Representation of OMPs

Combinations of OMPs

By definition, OMPs are combinations of BPQs. The implicit value of an OMP $ p$ equals the combination $ b_1\oplus\ldots\oplus b_n$ of its constituent BPQs $ b_1,\ldots,b_n$. This property allows OMPs to be defined as functions such that an OMP $ P=b_1\oplus\ldots\oplus b_n$ is a function $ f_P: \mathds{B}\mapsto\mathds{N}: b\rightarrow f_P(b)$ where $ \mathds{B}$ is the set of BPQs, $ \mathds{N}$ is the set of natural numbers and $ f_P(b)$ equals the number of occurrences of $ b$ in $ b_1,\ldots,b_n$.

For example, let $ P_{\text{model}}$ denote the OMP associated with the scenario model that contains three logistic population growth models ($ b_{21}$), two Holling predation model ($ b_{13}$) and one competition model ($ b_{31}$). Therefore,

$\displaystyle P_{\text{model}}=b_{21}\oplus b_{21}\oplus b_{21}\oplus b_{13}\oplus b_{13}\oplus b_{31}$    

and hence:

$\displaystyle f_{P_{\text{model}}}(b)= \begin{cases}3 & \text{if }b=b_{21}\\ 2 & \text{if }b=b_{13}\\ 1 & \text{if }b=b_{31}\\ 0 & \text{otherwise} \end{cases}$    

By describing OMPs as functions, the concept of combinations of OMPs becomes clear. For two OMPs $ P_1$ and $ P_2$, the combined preference $ P_1\oplus P_2$ is defined as:

$\displaystyle f_{P_1\oplus P_2}:\mathds{B}\mapsto\mathds{N}:b\rightarrow f_{P_1\oplus P_2}(b)=f_{P_1}(b)+f_{P_2}(b)$    

Note that the combination operator $ \oplus$ is assumed to be commutative, associative and strictly monotonic ( $ P\prec P\oplus P$). The latter assumption is made to better reflect the ideas underpinning conventional utility calculi [1].


next up previous
Next: Partial ordering of OMPs Up: Order-of-magnitude preferences (OMPs) Previous: Representation of OMPs
Jeroen Keppens 2004-03-01