- 1
-
Boutilier, C., Dean, T., & Hanks, S. (1999).
Decision-theoretic planning: Structural assumptions and computational
leverage.
Journal of Artificial Intelligence Research, 11, 1–94.
- 2
-
Boutilier, C., Dearden, R., & Goldszmidt, M. (1995).
Exploiting structure in policy construction.
In Mellish, C. S. (Ed.), Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence, pp. 1104–1111,
Montreal, Canada.
Morgan Kaufmann Publishers.
- 3
-
Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D. (1996).
Context-specific independence in Bayesian networks.
In Proceedings of the Twelfth Annual Conference on Uncertainty
in Artificial Intelligence (UAI 96), pp. 115–123, Portland, OR.
- 4
-
Dean, T., & Kanazawa, K. (1989).
A model for reasoning about persistence and causation.
Computational Intelligence, 5(3), 142–150.
- 5
-
Dearden, R., & Boutilier, C. (1997).
Abstraction and approximate decision-theoretic planning.
Artificial Intelligence, 89(1–2), 219–283.
- 6
-
Fox, M., & Long, D. (2003).
PDDL2.1: An extension to PDDL for expressing temporal planning
domains.
Journal of Artificial Intelligence Research, 20, 61–124.
- 7
-
Guestrin, C., Koller, D., Parr, R., & Venkataraman, S. (2003).
Efficient solution algorithms for factored MDPs.
Journal of Artificial Intelligence Research, 19, 399–468.
- 8
-
Hoey, J., St-Aubin, R., Hu, A., & Boutilier, C. (1999).
SPUDD: Stochastic planning using decision diagrams.
In Laskey, K. B., & Prade, H. (Eds.), Proceedings of
the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp.
279–288, Stockholm, Sweden.
Morgan Kaufmann Publishers.
- 9
-
Howard, R. A. (1960).
Dynamic Programming and Markov Processes.
John Wiley & Sons, New York, NY.
- 10
-
Howard, R. A. (1971).
Dynamic Probabilistic Systems, Vol. I: Markov Models.
John Wiley & Sons, New York, NY.
- 11
-
Kushmerick, N., Hanks, S., & Weld, D. S. (1995).
An algorithm for probabilistic planning.
Artificial Intelligence, 76(1–2), 239–286.
- 12
-
Littman, M. L. (1997).
Probabilistic propositional planning: Representations and complexity.
In Proceedings of the Fourteenth National Conference on
Artificial Intelligence, pp. 748–754, Providence, RI.
American Association for Artificial Intelligence, AAAI Press.
- 13
-
Littman, M. L., Goldsmith, J., & Mundhenk, M. (1998).
The computational complexity of probabilistic planning.
Journal of Artificial Intelligence Research, 9, 1–36.
- 14
-
McDermott, D. (2000).
The 1998 AI planning systems competition.
AI Magazine, 21(2), 35–55.
- 15
-
Puterman, M. L. (1994).
Markov Decision Processes: Discrete Stochastic Dynamic
Programming.
John Wiley & Sons, New York, NY.
- 16
-
Rintanen, J. (2003).
Expressive equivalence of formalisms for planning with sensing.
In Giunchiglia, E., Muscettola, N., & Nau, D. S. (Eds.),
Proceedings of the Thirteenth International Conference on Automated
Planning and Scheduling, pp. 185–194, Trento, Italy.
AAAI Press.
- 17
-
Yoon, S., Fern, A., & Givan, R. (2005).
Learning measures of progress for planning domains.
In Proceedings of the Twentieth National Conference on
Artificial Intelligence, pp. 1217–1222.
- 18
-
Younes, H. L. S., & Littman, M. L. (2004).
PPDDL1.0: An extension to PDDL for expressing planning domains
with probabilistic effects.
Tech. rep. CMU-CS-04-167, Carnegie Mellon University,
Pittsburgh, PA.
Håkan L. S. Younes
2005-12-06