- 1
-
AT&T Labs-Research.
Graphviz.
Available from http://www.research.att.com/sw/tools/graphviz/,
2000.
- 2
-
F. Bacchus, C. Boutilier, and A. Grove.
Rewarding behaviors.
In Proc. American National Conference on Artificial Intelligence
(AAAI), pages 1160-1167, 1996.
- 3
-
F. Bacchus, C. Boutilier, and A. Grove.
Structured solution methods for non-Markovian decision processes.
In Proc. American National Conference on Artificial Intelligence
(AAAI), pages 112-117, 1997.
- 4
-
F. Bacchus and F. Kabanza.
Planning for temporally extended goals.
Annals of Mathematics and Artificial Intelligence, 22:5-27,
1998.
- 5
-
F. Bacchus and F. Kabanza.
Using temporal logic to express search control knowledge for
planning.
Artificial Intelligence, 116(1-2), 2000.
- 6
-
C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski.
Controller synthesis for probabilistic systems (extended abstract).
In Proc. IFIP International Conference on Theoretical Computer
Science (IFIP TCS), 2004.
- 7
-
C. Baral and J. Zhao.
Goal specification in presence of nondeterministic actions.
In Proc. European Conference on Artificial Intelligence (ECAI),
pages 273-277, 2004.
- 8
-
A.G. Barto, S.L. Bardtke, and S.P. Singh.
Learning to act using real-time dynamic programming.
Artificial Intelligence, 72:81-138, 1995.
- 9
-
B. Bonet and H. Geffner.
Labeled RTDP: Improving the convergence of real-time dynamic
programming.
In Proc. International Conference on Automated Planning and
Scheduling (ICAPS), pages 12-21, 2003.
- 10
-
B. Bonet and H. Geffner.
mGPT: A probabilistic planner based on heuristic search.
Journal of Artificial Intelligence Research, 24:933-944, 2005.
- 11
-
C. Boutilier, T. Dean, and S. Hanks.
Decision-theoretic planning: Structural assumptions and computational
leverage.
In Journal of Artificial Intelligence Research, volume 11,
pages 1-94, 1999.
- 12
-
C. Boutilier, R. Dearden, and M. Goldszmidt.
Stochastic dynamic programming with factored representations.
Artificial Intelligence, 121(1-2):49-107, 2000.
- 13
-
D. Calvanese, G. De Giacomo, and M. Vardi.
Reasoning about actions and planning in LTL action theories.
In Proc. International Conference on the Principles of Knowledge
Representation and Reasoning (KR), pages 493-602, 2002.
- 14
-
A. Cesta, S. Bahadori, Cortellessa G, G. Grisetti, M.V. Giuliani, L. Loochi,
G.R. Leone, D. Nardi, A. Oddi, F. Pecora, R. Rasconi, A Saggase, and
M. Scopelliti.
The RoboCare project. Cognitive systems for the care of the
elderly.
In Proc. International Conference on Aging, Disability and
Independence (ICADI), 2003.
- 15
-
J. Chomicki.
Efficient checking of temporal integrity constraints using bounded
history encoding.
ACM Transactions on Database Systems, 20(2):149-186, 1995.
- 16
-
U. Dal Lago, M. Pistore, and P. Traverso.
Planning with a language for extended goals.
In Proc. American National Conference on Artificial Intelligence
(AAAI), pages 447-454, 2002.
- 17
-
T. Dean, L. Kaelbling, J. Kirman, and A. Nicholson.
Planning under time constraints in stochastic domains.
Artificial Intelligence, 76:35-74, 1995.
- 18
-
T. Dean and K. Kanazawa.
A model for reasoning about persistance and causation.
Computational Intelligence, 5:142-150, 1989.
- 19
-
M. Drummond.
Situated control rules.
In Proc. International Conference on the Principles of Knowledge
Representation and Reasoning (KR), pages 103-113, 1989.
- 20
-
E. A. Emerson.
Temporal and modal logic.
In Handbook of Theoretical Computer Science, volume B, pages
997-1072. Elsevier and MIT Press, 1990.
- 21
-
Z. Feng and E. Hansen.
Symbolic LAO search for factored Markov decision processes.
In Proc. American National Conference on Artificial Intelligence
(AAAI), pages 455-460, 2002.
- 22
-
Z. Feng, E. Hansen, and S. Zilberstein.
Symbolic generalization for on-line planning.
In Proc. Conference on Uncertainty in Artificial Intelligence
(UAI), pages 209-216, 2003.
- 23
-
A. Fern, S. Yoon, and R. Givan.
Learning domain-specific knowledge from random walks.
In Proc. International Conference on Automated Planning and
Scheduling (ICAPS), pages 191-198, 2004.
- 24
-
M. Fourman.
Propositional planning.
In Proc. AIPS Workshop on Model-Theoretic Approaches to
Planning, pages 10-17, 2000.
- 25
-
C. Gretton, D. Price, and S. Thiébaux.
Implementation and comparison of solution methods for decision
processes with non-Markovian rewards.
In Proc. Conference on Uncertainty in Artificial Intelligence
(UAI), pages 289-296, 2003.
- 26
-
C. Gretton, D. Price, and S. Thiébaux.
NMRDPP: a system for decision-theoretic planning with
non-Markovian rewards.
In Proc. ICAPS Workshop on Planning under Uncertainty and
Incomplete Information, pages 48-56, 2003.
- 27
-
P. Haddawy and S. Hanks.
Representations for decision-theoretic planning: Utility functions
and deadline goals.
In Proc. International Conference on the Principles of Knowledge
Representation and Reasoning (KR), pages 71-82, 1992.
- 28
-
E. Hansen and S. Zilberstein.
LAO: A heuristic search algorithm that finds solutions with
loops.
Artificial Intelligence, 129:35-62, 2001.
- 29
-
J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier.
SPUDD: stochastic planning using decision diagrams.
In Proc. Conference on Uncertainty in Artificial Intelligence
(UAI), pages 279-288, 1999.
- 30
-
J. Hoffmann.
Local search topology in planning benchmarks: A theoretical analysis.
In Proc. International Conference on AI Planning and Scheduling
(AIPS), pages 92-100, 2002.
- 31
-
J. Hoffmann and B. Nebel.
The FF planning system: Fast plan generation through heuristic
search.
Journal of Artificial Intelligence Research, 14:253-302, 2001.
- 32
-
R.A. Howard.
Dynamic Programming and Markov Processes.
MIT Press, Cambridge, MA, 1960.
- 33
-
F. Kabanza and S. Thiébaux.
Search control in planning for temporally extended goals.
In Proc. International Conference on Automated Planning and
Scheduling (ICAPS), pages 130-139, 2005.
- 34
-
E. Karabaev and O Skvortsova.
A Heuristic Search Algorithm for Solving First-Order
MDPs.
In Proc. Conference on Uncertainty in Artificial Intelligence
(UAI), pages 292-299, July 2005.
- 35
-
J. Koehler and K. Schuster.
Elevator control as a planning problem.
In Proc. International Conference on AI Planning and Scheduling
(AIPS), pages 331-338, 2000.
- 36
-
R. Korf.
Real-time heuristic search.
Artificial Intelligence, 42:189-211, 1990.
- 37
-
N. Kushmerick, S. Hanks, and D. Weld.
An algorithm for probabilistic planning.
Artificial Intelligence, 76:239-286, 1995.
- 38
-
O. Lichtenstein, A. Pnueli, and L. Zuck.
The glory of the past.
In Proc. Conference on Logics of Programs, pages 196-218.
LNCS, volume 193, 1985.
- 39
-
N. Onder, G. C. Whelan, and L. Li.
Engineering a conformant probabilistic planner.
Journal of Artificial Intelligence Research, 25:1-15, 2006.
- 40
-
M. Pistore and P. Traverso.
Planning as model-checking for extended goals in non-deterministic
domains.
In Proc. International Joint Conference on Artificial
Intelligence (IJCAI-01), pages 479-484, 2001.
- 41
-
J. Slaney.
Semi-positive LTL with an uninterpreted past operator.
Logic Journal of the IGPL, 13:211-229, 2005.
- 42
-
J. Slaney and S. Thiébaux.
Blocks world revisited.
Artificial Intelligence, 125:119-153, 2001.
- 43
-
F. Somenzi.
CUDD: CU Decision Diagram Package.
Available from ftp://vlsi.colorado.edu/pub/, 2001.
- 44
-
F. Teichteil-Königsbuch and P. Fabiani.
Symbolic heuristic policy iteration algorithms for structured
decision-theoretic exploration problems.
In Proc. ICAPS workshop on Planning under Uncertainty for
Autonomous Systems, 2005.
- 45
-
S. Thiébaux, J. Hertzberg, W. Shoaff, and M. Schneider.
A stochastic model of actions and plans for anytime planning under
uncertainty.
International Journal of Intelligent Systems, 10(2):155-183,
1995.
- 46
-
S. Thiébaux, F. Kabanza, and J. Slaney.
Anytime state-based solution methods for decision processes with
non-Markovian rewards.
In Proc. Conference on Uncertainty in Artificial Intelligence
(UAI), pages 501-510, 2002.
- 47
-
S. Thiébaux, F. Kabanza, and J. Slaney.
A model-checking approach to decision-theoretic planning with
non-Markovian rewards.
In Proc. ECAI Workshop on Model-Checking in Artificial
Intelligence (MoChArt-02), pages 101-108, 2002.
- 48
-
M. Vardi.
Automated verification = graph, logic, and automata.
In Proc. International Joint Conference on Artificial
Intelligence (IJCAI), pages 603-606, 2003.
Invited paper.
- 49
-
P. Wolper.
On the relation of programs and computations to models of temporal
logic.
In Proc. Temporal Logic in Specification, LNCS 398, pages
75-123, 1987.
- 50
-
H. L. S. Younes and M. Littman.
PPDDL1.0: An extension to PDDL for expressing planning domains
with probabilistic effects.
Technical Report CMU-CS-04-167, School of Computer Science, Carnegie
Mellon University, Pittsburgh, Pennsylvania, 2004.
- 51
-
H. L. S. Younes, M. Littman, D. Weissmann, and J. Asmuth.
The first probabilistic track of the International Planning
Competition.
In Journal of Artificial Intelligence Research, volume 24,
pages 851-887, 2005.
- 52
-
H.L.S. Younes and R. G. Simmons.
Policy generation for continuous-time stochastic domains with
concurrency.
In Proc. International Conference on Automated Planning and
Scheduling (ICAPS), pages 325-333, 2004.
Sylvie Thiebaux
2006-01-20