Bibliography

1
AT&T Labs-Research.
Graphviz.
Available from http://www.research.att.com/sw/tools/graphviz/, 2000.

2
F. Bacchus, C. Boutilier, and A. Grove.
Rewarding behaviors.
In Proc. American National Conference on Artificial Intelligence (AAAI), pages 1160-1167, 1996.

3
F. Bacchus, C. Boutilier, and A. Grove.
Structured solution methods for non-Markovian decision processes.
In Proc. American National Conference on Artificial Intelligence (AAAI), pages 112-117, 1997.

4
F. Bacchus and F. Kabanza.
Planning for temporally extended goals.
Annals of Mathematics and Artificial Intelligence, 22:5-27, 1998.

5
F. Bacchus and F. Kabanza.
Using temporal logic to express search control knowledge for planning.
Artificial Intelligence, 116(1-2), 2000.

6
C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski.
Controller synthesis for probabilistic systems (extended abstract).
In Proc. IFIP International Conference on Theoretical Computer Science (IFIP TCS), 2004.

7
C. Baral and J. Zhao.
Goal specification in presence of nondeterministic actions.
In Proc. European Conference on Artificial Intelligence (ECAI), pages 273-277, 2004.

8
A.G. Barto, S.L. Bardtke, and S.P. Singh.
Learning to act using real-time dynamic programming.
Artificial Intelligence, 72:81-138, 1995.

9
B. Bonet and H. Geffner.
Labeled RTDP: Improving the convergence of real-time dynamic programming.
In Proc. International Conference on Automated Planning and Scheduling (ICAPS), pages 12-21, 2003.

10
B. Bonet and H. Geffner.
mGPT: A probabilistic planner based on heuristic search.
Journal of Artificial Intelligence Research, 24:933-944, 2005.

11
C. Boutilier, T. Dean, and S. Hanks.
Decision-theoretic planning: Structural assumptions and computational leverage.
In Journal of Artificial Intelligence Research, volume 11, pages 1-94, 1999.

12
C. Boutilier, R. Dearden, and M. Goldszmidt.
Stochastic dynamic programming with factored representations.
Artificial Intelligence, 121(1-2):49-107, 2000.

13
D. Calvanese, G. De Giacomo, and M. Vardi.
Reasoning about actions and planning in LTL action theories.
In Proc. International Conference on the Principles of Knowledge Representation and Reasoning (KR), pages 493-602, 2002.

14
A. Cesta, S. Bahadori, Cortellessa G, G. Grisetti, M.V. Giuliani, L. Loochi, G.R. Leone, D. Nardi, A. Oddi, F. Pecora, R. Rasconi, A Saggase, and M. Scopelliti.
The RoboCare project. Cognitive systems for the care of the elderly.
In Proc. International Conference on Aging, Disability and Independence (ICADI), 2003.

15
J. Chomicki.
Efficient checking of temporal integrity constraints using bounded history encoding.
ACM Transactions on Database Systems, 20(2):149-186, 1995.

16
U. Dal Lago, M. Pistore, and P. Traverso.
Planning with a language for extended goals.
In Proc. American National Conference on Artificial Intelligence (AAAI), pages 447-454, 2002.

17
T. Dean, L. Kaelbling, J. Kirman, and A. Nicholson.
Planning under time constraints in stochastic domains.
Artificial Intelligence, 76:35-74, 1995.

18
T. Dean and K. Kanazawa.
A model for reasoning about persistance and causation.
Computational Intelligence, 5:142-150, 1989.

19
M. Drummond.
Situated control rules.
In Proc. International Conference on the Principles of Knowledge Representation and Reasoning (KR), pages 103-113, 1989.

20
E. A. Emerson.
Temporal and modal logic.
In Handbook of Theoretical Computer Science, volume B, pages 997-1072. Elsevier and MIT Press, 1990.

21
Z. Feng and E. Hansen.
Symbolic LAO$^*$ search for factored Markov decision processes.
In Proc. American National Conference on Artificial Intelligence (AAAI), pages 455-460, 2002.

22
Z. Feng, E. Hansen, and S. Zilberstein.
Symbolic generalization for on-line planning.
In Proc. Conference on Uncertainty in Artificial Intelligence (UAI), pages 209-216, 2003.

23
A. Fern, S. Yoon, and R. Givan.
Learning domain-specific knowledge from random walks.
In Proc. International Conference on Automated Planning and Scheduling (ICAPS), pages 191-198, 2004.

24
M. Fourman.
Propositional planning.
In Proc. AIPS Workshop on Model-Theoretic Approaches to Planning, pages 10-17, 2000.

25
C. Gretton, D. Price, and S. Thiébaux.
Implementation and comparison of solution methods for decision processes with non-Markovian rewards.
In Proc. Conference on Uncertainty in Artificial Intelligence (UAI), pages 289-296, 2003.

26
C. Gretton, D. Price, and S. Thiébaux.
NMRDPP: a system for decision-theoretic planning with non-Markovian rewards.
In Proc. ICAPS Workshop on Planning under Uncertainty and Incomplete Information, pages 48-56, 2003.

27
P. Haddawy and S. Hanks.
Representations for decision-theoretic planning: Utility functions and deadline goals.
In Proc. International Conference on the Principles of Knowledge Representation and Reasoning (KR), pages 71-82, 1992.

28
E. Hansen and S. Zilberstein.
LAO$^*$: A heuristic search algorithm that finds solutions with loops.
Artificial Intelligence, 129:35-62, 2001.

29
J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier.
SPUDD: stochastic planning using decision diagrams.
In Proc. Conference on Uncertainty in Artificial Intelligence (UAI), pages 279-288, 1999.

30
J. Hoffmann.
Local search topology in planning benchmarks: A theoretical analysis.
In Proc. International Conference on AI Planning and Scheduling (AIPS), pages 92-100, 2002.

31
J. Hoffmann and B. Nebel.
The FF planning system: Fast plan generation through heuristic search.
Journal of Artificial Intelligence Research, 14:253-302, 2001.

32
R.A. Howard.
Dynamic Programming and Markov Processes.
MIT Press, Cambridge, MA, 1960.

33
F. Kabanza and S. Thiébaux.
Search control in planning for temporally extended goals.
In Proc. International Conference on Automated Planning and Scheduling (ICAPS), pages 130-139, 2005.

34
E. Karabaev and O Skvortsova.
A Heuristic Search Algorithm for Solving First-Order MDPs.
In Proc. Conference on Uncertainty in Artificial Intelligence (UAI), pages 292-299, July 2005.

35
J. Koehler and K. Schuster.
Elevator control as a planning problem.
In Proc. International Conference on AI Planning and Scheduling (AIPS), pages 331-338, 2000.

36
R. Korf.
Real-time heuristic search.
Artificial Intelligence, 42:189-211, 1990.

37
N. Kushmerick, S. Hanks, and D. Weld.
An algorithm for probabilistic planning.
Artificial Intelligence, 76:239-286, 1995.

38
O. Lichtenstein, A. Pnueli, and L. Zuck.
The glory of the past.
In Proc. Conference on Logics of Programs, pages 196-218. LNCS, volume 193, 1985.

39
N. Onder, G. C. Whelan, and L. Li.
Engineering a conformant probabilistic planner.
Journal of Artificial Intelligence Research, 25:1-15, 2006.

40
M. Pistore and P. Traverso.
Planning as model-checking for extended goals in non-deterministic domains.
In Proc. International Joint Conference on Artificial Intelligence (IJCAI-01), pages 479-484, 2001.

41
J. Slaney.
Semi-positive LTL with an uninterpreted past operator.
Logic Journal of the IGPL, 13:211-229, 2005.

42
J. Slaney and S. Thiébaux.
Blocks world revisited.
Artificial Intelligence, 125:119-153, 2001.

43
F. Somenzi.
CUDD: CU Decision Diagram Package.
Available from ftp://vlsi.colorado.edu/pub/, 2001.

44
F. Teichteil-Königsbuch and P. Fabiani.
Symbolic heuristic policy iteration algorithms for structured decision-theoretic exploration problems.
In Proc. ICAPS workshop on Planning under Uncertainty for Autonomous Systems, 2005.

45
S. Thiébaux, J. Hertzberg, W. Shoaff, and M. Schneider.
A stochastic model of actions and plans for anytime planning under uncertainty.
International Journal of Intelligent Systems, 10(2):155-183, 1995.

46
S. Thiébaux, F. Kabanza, and J. Slaney.
Anytime state-based solution methods for decision processes with non-Markovian rewards.
In Proc. Conference on Uncertainty in Artificial Intelligence (UAI), pages 501-510, 2002.

47
S. Thiébaux, F. Kabanza, and J. Slaney.
A model-checking approach to decision-theoretic planning with non-Markovian rewards.
In Proc. ECAI Workshop on Model-Checking in Artificial Intelligence (MoChArt-02), pages 101-108, 2002.

48
M. Vardi.
Automated verification = graph, logic, and automata.
In Proc. International Joint Conference on Artificial Intelligence (IJCAI), pages 603-606, 2003.
Invited paper.

49
P. Wolper.
On the relation of programs and computations to models of temporal logic.
In Proc. Temporal Logic in Specification, LNCS 398, pages 75-123, 1987.

50
H. L. S. Younes and M. Littman.
PPDDL1.0: An extension to PDDL for expressing planning domains with probabilistic effects.
Technical Report CMU-CS-04-167, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, 2004.

51
H. L. S. Younes, M. Littman, D. Weissmann, and J. Asmuth.
The first probabilistic track of the International Planning Competition.
In Journal of Artificial Intelligence Research, volume 24, pages 851-887, 2005.

52
H.L.S. Younes and R. G. Simmons.
Policy generation for continuous-time stochastic domains with concurrency.
In Proc. International Conference on Automated Planning and Scheduling (ICAPS), pages 325-333, 2004.


Sylvie Thiebaux 2006-01-20