Introduction

Introduction to Machine Learning - 10-715

Content

  • Logistics

  • Machine Learning Problems

    • Supervised Learning

    • Unsupervised Learning

  • Performance Measures

    • Loss

    • Risk

    • Bayes Risk

  • ML Applications

  • Basic Statistics

    • Dependence

    • Independence

    • Conditional Independence

  • Bayes Estimation

    • MLE estimation

    • MAP estimation

    • Naive Bayes classifier

Supplementary material

  • Introduction slides in PDF

  • MLE, MAP, and Bayes classification PDF

Recommended papers

  • Alex Smola and S.V.N. Vishwanathan: Introduction to Machine Learning, Chapter I and II in PDF

  • Tom Mitchell's 10701 lectures (Lectures 2,3,4)

  • Tom Mitchell: Machine Learning, Chapter I in PDF

  • Andrew Moore's Basic Probability Tutorial slides in PDF