|
Empirical Measurement of Perceived Privacy Risk
Personal data is increasingly collected and used by companies to tailor services to users, and to make financial, employment and health-related decisions about individuals. When personal data is inappropriately collected or misused, however, individuals may experience violations of their privacy. Despite to the recent shift toward a risk-managed approach for privacy, there are to our knowledge no empirical methods to determine which personal data is most at-risk. We conducted a series of experiments to measure perceived privacy risk, which is based on expressed preferences and which we define as an individual's willingness to share their personal data with others given the likelihood of a potential privacy harm. These experiments control for one or more of the six factors affecting an individual's willingness to share their information: data type, discomfort associated with the data type, data purpose, privacy harm, harm likelihood, and individual demographic factors such as age range, gender, education level, ethnicity and household income. To measure likelihood, we adapt Construal Level Theory from psychology to frame individual attitudes about risk likelihood based on social and physical distances to the privacy harm. The findings include predictions about the extent to which the above factors correspond to risk acceptance, including that perceived risk is lower for induced disclosure harms when compared to surveillance and insecurity harms as defined in Solove's Taxonomy of Privacy. In addition, we found that likelihood was not a multiplicative factor in computing privacy risk perception, which challenges conventional concepts of privacy risk in the privacy and security community
[Paper]
This work is supported by NSF Award CNS‐1330596, NSA Award #141333, and ONR Award #N00244‐16‐1‐0006
|