Generalized angular momentum is defined by the relation:

tex2html_wrap159 , and tex2html_wrap160

In non-orthonormal coordinates: tex2html_wrap161

from this, you can derive the orbital angular momentum spectrum.

Define tex2html_wrap162 , tex2html_wrap163

This means: tex2html_wrap164 , tex2html_wrap165 , tex2html_wrap166

tex2html_wrap167 still commutes with everything.

CSCO is tex2html_wrap168 tex2html_wrap169 and tex2html_wrap170

tex2html_wrap171 tex2html_wrap172

tex2html_wrap173 are related.

tex2html_wrap174

tex2html_wrap175

Similarly, tex2html_wrap176 , tex2html_wrap177

tex2html_wrap178

It must be that:

tex2html_wrap179 s.t. tex2html_wrap180

tex2html_wrap181

Similarly, for a minimal j, tex2html_wrap182 tex2html_wrap183

tex2html_wrap184 is an integer because if it is not, the ladder operators will yield contradictions.

tex2html_wrap185 and tex2html_wrap186

m must be an integer because otherwise tex2html_wrap187 is multivalued.

tex2html_wrap188



source
psfile jl@crush.caltech.edu index
angular_momentum_coupling
orbital_angular_momentum
representation