10-601, Spring 2017
School of Computer Science
Carnegie Mellon University
This schedule is tentative and subject to change. Please check back often.
Date | Lecture | Readings | Announcements | ||||||
---|---|---|---|---|---|---|---|---|---|
MC | HTF | MP | BI | Other | |||||
Wed, 18-Jan | Lecture 1
:
Course Overview [Slides] [Video] |
1 | 1, 2 | 1 | 1 |
|
|
||
Classification and Regression |
|||||||||
Mon, 23-Jan | Lecture 2
:
Machine Learning in Practice / k-Nearest Neighbors [Slides] [Whiteboard] [Video] |
8.2 | 13.3 | -- | 2.5.2 |
|
|
||
Tue, 24-Jan |
Background Test (Evening) |
|
|||||||
Wed, 25-Jan | Lecture 3
:
Experimental Design / k-Nearest Neighbors [Slides] [Whiteboard] [Video] |
-- | -- | -- | -- |
|
|
||
Mon, 30-Jan | Lecture 4
:
The Probabilistic Approach to Learning from Data [Slides] [Whiteboard] [Video] |
-- | -- | 2 | 2 |
|
|
||
Wed, 1-Feb | Lecture 5
:
MLE and MAP / Naive Bayes [Slides] [Whiteboard] [Video] |
6.1-6.10 | -- | 3 | -- |
|
HW1 due |
||
Mon, 6-Feb | Lecture 6
:
Gaussian Naive Bayes [Slides] [Whiteboard] [Video] |
-- | -- | -- | -- |
|
|
||
Wed, 8-Feb | Lecture 7
:
Optimization for ML / Linear Regression [Slides] [Whiteboard] [Video] |
-- | -- | -- | -- |
|
|
||
Mon, 13-Feb | Lecture 8
:
Linear Regression [Slides] [Whiteboard] [Video] |
-- | 3.1-3.4 | 7.1-7.3 | 3.1 |
|
HW2 due |
||
Wed, 15-Feb | Lecture 9
:
Logistic Regression / Nonlinear features [Slides] [Whiteboard] [Video] |
-- | 4.1, 4.4 | 8.1-8.3, 8.6 | 4.3.2, 4.3.4 |
|
|
||
Mon, 20-Feb | Lecture 10
:
Regularization / Perceptrons and Large Margin [Slides] [Whiteboard] [Video] |
4.4.0 | -- | 8.5.4 | 4.1.7 |
|
|
||
Wed, 22-Feb | Lecture 11
:
Kernels / Kernel Perceptron / SVMs [Slides] [Whiteboard] [Video] |
-- | -- | 14.1 - 14.2.4 | 6.1-6.2 |
|
HW3 due [Course Survey due Fri, Feb 24] |
||
Mon, 27-Feb | Lecture 12
:
Kernels / SVMs [Slides] [Whiteboard] [Video] |
-- | 12 - 12.38 | 14.5 | 7.1 |
|
|
||
Learning Theory |
|||||||||
Wed, 1-Mar | Lecture 13
:
Learning Theory (Part I) - Statistical Estimation [Slides] [Whiteboard] [Video] |
7 | -- | -- | -- |
|
[HW4 due Fri, Mar 03] |
||
Mon, 6-Mar | Lecture 14
:
Midterm Exam Review [Slides] [Video] |
|
|||||||
Tue, 7-Mar |
Midterm Exam (Evening Exam) 7:00pm - 9:30pm -- see Piazza for details about the location |
|
|||||||
Unsupervised Learning |
|||||||||
Wed, 8-Mar | Lecture 15
:
Clustering [Slides] [Whiteboard] [Video] |
-- | 14.3.0 | 25.5 | 12.1, 12.3 |
|
|
||
Mon, 13-Mar |
(No class: Midsemester break) |
|
|||||||
Wed, 15-Mar |
(No class: Midsemester break) |
|
|||||||
Mon, 20-Mar | Lecture 16
:
K-Means / GMMs [Slides] [Whiteboard] [Video] |
6.12 - 6.12.2 | 8.5 - 8.5.3 | 11.4.1, 11.4.2, 11.4.4 | 9 |
|
|
||
Wed, 22-Mar | Lecture 17
:
Expectation Maximization / PCA and Dimensionality Reduction [Slides] [Whiteboard] [Video] |
6.12 - 6.12.2 | 8.5 - 8.5.3 | 11.4.1, 11.4.2, 11.4.4 | 9 |
|
HW5 (Part I) due |
||
Feature Learning |
|||||||||
Mon, 27-Mar | Lecture 18
:
PCA / Neural Networks [Slides] [Whiteboard] [Video] |
-- | 14.5 | 12 | 12 |
|
|
||
Wed, 29-Mar | Lecture 19
:
Neural Networks [Slides] [Whiteboard] [Video] |
4 | 11 | -- | 5 |
|
|
||
Mon, 3-Apr | Lecture 20
:
Backpropagation [Slides] [Whiteboard] [Video] |
-- | -- | -- | -- |
|
HW6 due |
||
Wed, 5-Apr | Lecture 21
:
Deep Learning / CNNs [Slides] [Whiteboard] [Video] |
-- | -- | 28 | -- |
|
HW5 (Part II) due |
||
Graphical Models |
|||||||||
Mon, 10-Apr | Lecture 22
:
Bayesian Networks (Part I) [Slides] [Whiteboard] [Video] |
6.11 | -- | 10 - 10.2.1 | 8.1, 8.2.2 |
|
|
||
Wed, 12-Apr | Lecture 23
:
Bayesian Networks (Part II) [Slides] [Whiteboard] [Video] |
6.11 | -- | 10 - 10.2.1 | 8.1, 8.2.2 |
|
|
||
Mon, 17-Apr | Lecture 24
:
Hidden Markov Models [Slides] [Whiteboard] [Video] |
-- | -- | 10.2.2 - 10.2.3 | 13.1-13.2 |
|
HW7 due |
||
Learning Paradigms |
|||||||||
Wed, 19-Apr | Lecture 25
:
Matrix Factorization and collaborative filtering [Slides] [Whiteboard] [Video] |
-- | -- | -- | -- |
|
|
||
Mon, 24-Apr | Lecture 26
:
Reinforcement Learning [Slides] [Video] |
13 | -- | -- | -- |
|
HW8 due |
||
Wed, 26-Apr | Lecture 27
:
Information Theory [Slides] [Video] |
7 | -- | -- | -- |
|
|
||
Learning Theory |
|||||||||
Mon, 1-May | Lecture 28
:
Learning Theory (Part II) - PAC Learning [Slides] [Whiteboard] [Video] |
7 | -- | -- | -- |
|
|
||
Wed, 3-May | Lecture 29
:
Final Exam Review [Slides] [Whiteboard] [Video] |
HW9 due |
|||||||
Mon, 8-May |
Final exam, 5:30pm - 08:30pm |
|