next up previous contents
Next: Properties of Markovian arrival Up: Bibliography Previous: Proof of Theorem 11   Contents


Moment matching algorithm by Bobbio, Horváth, and Telek

In this section, we summarize the recent results by Bobbio et al. [22] on characterization of PH distributions and moment matching algorithms, which build upon our results in Chapter 2. Recall that ${\cal S}^{(n)}$ denotes the set of distributions that are well represented by an $n$-phase acyclic PH distribution (Definition 5). Bobbio et al. provide exact conditions for a distribution $G$ to be in set ${\cal S}^{(n)}$ (see Theorem 21) as well as exact conditions for $G \in {\cal S}^{(n)^*}$ (see Theorem 20), where ${\cal S}^{(n)^*}$ is defined as follows:

Definition 20   Let ${\cal S}^{(n)^*}$ denote the set of distributions that are well-represented by an $n$-phase acyclic PH distribution with no mass probability at zero for positive integer $n$.

Further, Bobbio et al. provide a closed form solution for mapping any $G\in {\cal
PH}_3$ to a minimal-phase acyclic PH distribution without mass probability at zeroB.1 (see Theorem 22). As we define the EC distribution and map an input distribution to an EC distribution in Chapter 2, Bobbio et al. also define a subset of PH distributions, and map an input distribution to a PH distribution in the subset. Specifically, Bobbio et al. map an input distribution to an Erlang-Exp distribution (see Figure B.1) or an Exp-Erlang distribution (see Figure B.2).
Figure B.1: The Markov chain whose absorption time defines an Erlang-Exp distribution.
\includegraphics[width=.75\linewidth]{fig/PH/Erlang-Exp.eps}
Figure B.2: The Markov chain whose absorption time defines an Exp-Erlang distribution.
\includegraphics[width=.75\linewidth]{fig/PH/Exp-Erlang.eps}

Theorem 20   [22] A distribution $G$ is in set ${\cal S}^{(n)^*}$ iff its normalized moments $m_2^G$ and $m_3^G$ satisfy the following conditions:

\begin{displaymath}
m_2^G \geq \frac{n+1}{n}
\end{displaymath}

and

\begin{eqnarray*}
m_3^G \mbox{ lower bound:} & &
\left\{\begin{array}{ll}
l...
... & \qquad\mbox{if } \frac{n}{n-1} < m_2^G,
\end{array}\right.
\end{eqnarray*}

where $l_n$ and $u_n$ are defined as follows:

\begin{eqnarray*}
l_n & = & \frac{(3+a_n)(n-1)+2a_n}{(n-1)(1+a_np_n)} - \frac{2...
...-n-1)\sqrt{1+\frac{n(m_2^G-2)}{n-1}}+(n+2)(3nm_2^G-2n-2)\right)
\end{eqnarray*}

where

\begin{eqnarray*}
p_n & = & \frac{(n+1)(m_2^G-2)}{2m_2^G(n-1)} \left(\frac{-2\s...
...c{m_2^G-2}{p_n(1-m_2^G)+\sqrt{p_n^2+\frac{p_nn(m_2^G-2)}{n-1}}}
\end{eqnarray*}

Theorem 21   [22] A distribution $G$ is in set ${\cal S}^{(n)}$ iff its normalized moments $m_2^G$ and $m_3^G$ satisfy the following conditions:

\begin{displaymath}
m_2^G \geq \frac{n+1}{n}
\end{displaymath}

and

\begin{eqnarray*}
m_3^G \mbox{ lower bound:} & &
\frac{n+2}{n+1} m_2^G \leq m...
...\infty & \mbox{if } \frac{n}{n-1} < m_2^G,
\end{array}\right.
\end{eqnarray*}

where $u_n$ is the same as in Theorem 20.

Theorem 22   [22] Let $G$ be a distribution in ${\cal S}^{(n)^*}\setminus {\cal S}^{(n-1)^*}$. If $m_2^G\leq \frac{n}{n-1}$ or $m_3^G\leq 2m_2^G-1$, then $G$ is well-represented by the Erlang-Exp distribution with the following parameters:

\begin{eqnarray*}
\lambda_X & = & \frac{ap+1}{\mu_1^G} \\
\lambda_Y & = & \fr...
...2^G)^2(n+1)+16m_3^G(n+1)+m_2^G(n(m_3^G-15)(m_3^G+1)-8(m_3^G+3))
\end{eqnarray*}

If $m_2^G > \frac{n}{n-1}$ and $m_3^G > u_{n-1}$, then $G$ is well-represented by the Exp-Erlang distribution with the following parameters:

\begin{eqnarray*}
\lambda_X & = & \frac{a+p}{\mu_1^G} \\
\lambda_Y & = & \fra...
...frac{2(f-1)(n-1)}{(n-1)(m_2^Gf^2-2f+2)-n} \\
p & = & (f-1)a,
\end{eqnarray*}

and $f$ is given by the following stepsB.2:

\begin{eqnarray*}
K_1 & = & n-1 \\
K_2 & = & n-2 \\
K_3 & = & 3m_2^G - 2m_3...
...{15} + K_{17} & \mbox{if } K_{20} < 0. \\
\end{array}\right.
\end{eqnarray*}


next up previous contents
Next: Properties of Markovian arrival Up: Bibliography Previous: Proof of Theorem 11   Contents
Takayuki Osogami 2005-07-19