next up previous contents
Next: Subclasses of PH distribution Up: Brief tutorial on phase Previous: Examples of PH distributions   Contents

Definition of PH distribution

In general, a PH distribution is the distribution of the time until absorption into state 0 in a Markov chain.

Figure 2.7: A three-phase PH distribution.
\includegraphics[width=.45\linewidth]{fig/PH3_distribution.eps}

Definition 8   A PH distribution with parameter $(\Vec{\tau},\mathbf{T})$, PH( $\Vec{\tau},\mathbf{T}$), is the distribution of the time until absorption into state 0 in a Markov chain on the states $\{0,1,...,n\}$ with initial probability vector $(\tau_0,\Vec\tau)$ and infinitesimal generator

\begin{displaymath}
\left(\begin{array}{cc}0 & \Vec{0}\\
\Vec{t} & \mathbf{T}
\end{array}\right),
\end{displaymath}

where $\Vec{t}=-\mathbf{T}\Vec{1}$ and $\tau_0 = 1 - \Vec\tau\Vec{1}$, where $\Vec{1}$ is a column vector of 1's.

Figure 2.7 illustrates a three phase PH distribution having parameters

\begin{displaymath}
\Vec{\tau} = (\tau_1,\tau_2,\tau_3)
\quad\mbox{and}\quad
\...
...\
\lambda_{31} & \lambda_{32} & -\sigma_3
\end{array}\right),
\end{displaymath}

where $\sigma_i=\sum_{j\neq i} \lambda_{ij}$ for $i=1,2,3$. Note that the initial state can be the absorption state (state 0) with positive probability. If the initial state is the absorption state, the absorption time is zero.



Takayuki Osogami 2005-07-19