Syntax:
loop compound-form* => result*
loop [name-clause] {variable-clause}* {main-clause}* => result*
name-clause::= named name
variable-clause::= with-clause | initial-final | for-as-clause
with-clause::= with var1 [type-spec] [= form1] {and var2 [type-spec] [= form2]}*
main-clause::= unconditional | accumulation | conditional | termination-test | initial-final
initial-final::= initially compound-form+ | finally compound-form+
unconditional::= {do | doing} compound-form+ | return {form | it}
accumulation::= list-accumulation | numeric-accumulation
list-accumulation::= {collect | collecting | append | appending | nconc | nconcing} {form | it} [into simple-var]
numeric-accumulation::= {count | counting | sum | summing | } maximize | maximizing | minimize | minimizing {form | it} [into simple-var] [type-spec]
conditional::= {if | when | unless} form selectable-clause {and selectable-clause}* [else selectable-clause {and selectable-clause}*] [end]
selectable-clause::= unconditional | accumulation | conditional
termination-test::= while form | until form | repeat form | always form | never form | thereis form
for-as-clause::= {for | as} for-as-subclause {and for-as-subclause}*
for-as-subclause::= for-as-arithmetic | for-as-in-list | for-as-on-list | for-as-equals-then | for-as-across | for-as-hash | for-as-package
for-as-arithmetic::= var [type-spec] for-as-arithmetic-subclause
for-as-arithmetic-subclause::= arithmetic-up | arithmetic-downto | arithmetic-downfrom
arithmetic-up::= [[{from | upfrom} form1 | {to | upto | below} form2 | by form3]]+
arithmetic-downto::= [[{{from form1}}1 | {{{downto | above} form2}}1 | by form3]]
arithmetic-downfrom::= [[{{downfrom form1}}1 | {to | downto | above} form2 | by form3]]
for-as-in-list::= var [type-spec] in form1 [by step-fun]
for-as-on-list::= var [type-spec] on form1 [by step-fun]
for-as-equals-then::= var [type-spec] = form1 [then form2]
for-as-across::= var [type-spec] across vector
for-as-hash::= var [type-spec] being {each | the} {{hash-key | hash-keys} {in | of} hash-table [using (hash-value other-var)] | {hash-value | hash-values} {in | of} hash-table [using (hash-key other-var)]}
for-as-package::= var [type-spec] being {each | the} {symbol | symbols | present-symbol | present-symbols | external-symbol | external-symbols} [{in | of} package]
type-spec::= simple-type-spec | destructured-type-spec
simple-type-spec::= fixnum | float | t | nil
destructured-type-spec::= of-type d-type-spec
d-type-spec::= type-specifier | (d-type-spec . d-type-spec)
var::= d-var-spec
var1::= d-var-spec
var2::= d-var-spec
other-var::= d-var-spec
d-var-spec::= simple-var | nil | (d-var-spec . d-var-spec)
Arguments and Values:
compound-form---a compound form.
name---a symbol.
simple-var---a symbol (a variable name).
form, form1, form2, form3---a form.
step-fun---a form that evaluates to a function of one argument.
vector---a form that evaluates to a vector.
hash-table---a form that evaluates to a hash table.
package---a form that evaluates to a package designator.
type-specifier---a type specifier. This might be either an atomic type specifier or a compound type specifier, which introduces some additional complications to proper parsing in the face of destructuring; for further information, see Section 6.1.1.7 (Destructuring).
result---an object.
Description:
For details, see Section 6.1 (The LOOP Facility).
Examples:
;; An example of the simple form of LOOP. (defun sqrt-advisor () (loop (format t "~&Number: ") (let ((n (parse-integer (read-line) :junk-allowed t))) (when (not n) (return)) (format t "~&The square root of ~D is ~D.~%" n (sqrt n))))) => SQRT-ADVISOR (sqrt-advisor) >> Number: 5<NEWLINE> >> The square root of 5 is 2.236068. >> Number: 4<NEWLINE> >> The square root of 4 is 2. >> Number: done<NEWLINE> => NIL ;; An example of the extended form of LOOP. (defun square-advisor () (loop as n = (progn (format t "~&Number: ") (parse-integer (read-line) :junk-allowed t)) while n do (format t "~&The square of ~D is ~D.~%" n (* n n)))) => SQUARE-ADVISOR (square-advisor) >> Number: 4<NEWLINE> >> The square of 4 is 16. >> Number: 23<NEWLINE> >> The square of 23 is 529. >> Number: done<NEWLINE> => NIL ;; Another example of the extended form of LOOP. (loop for n from 1 to 10 when (oddp n) collect n) => (1 3 5 7 9)
Affected By: None.
Exceptional Situations: None.
See Also:
do, dolist, dotimes, return, go, throw, Section 6.1.1.7 (Destructuring)
Notes:
Except that loop-finish cannot be used within a simple loop form, a simple loop form is related to an extended loop form in the following way:
(loop compound-form*) == (loop do compound-form*)