10-708 – Lectures (tentative)
2020 Spring
Lecture | Date | Topic | Slides | Videos | Further Reading | Note | Scribe
| Design of GMs |
01 | Jan 13 | Introduction to GM: (Eric) - Association between random variables - Marginal/partial correlation - Conditional independence | pdf | panopto, youtube | Jordan 2004, Airoldi 2007, Larry's notes | | pdf |
02 | Jan 15 | Undirected GMs: (Eric) - Markov property | pdf | panopto, youtube | Koller & Friedman Ch. 4 | | pdf |
| Jan 20 | | | | | MLK day | |
03 | Jan 22 | Directed GMs: (Eric) - Markov property | pdf | panopto, youtube | Koller & Friedman Ch. 3 | hw1 out | pdf
| Basic Inference and Learning |
04 | Jan 27 | Exact Inference: (Eric) - Variable elimination - Sum-product on trees - Belief propagation on junction trees | pdf | panopto, youtube | Jordan Ch. 3, Ch. 4, Koller & Friedman Ch. 9, Ch. 10 | | pdf |
05 | Jan 29 | Parameter Estimation: (Eric) - Fully observed: MLE, MAP, Bayesian - Exponential family distributions, GLMs - Partially observed: EM algorithm | pdf | panopto, youtube | Koller & Friedman Ch. 17.1-4, Ch. 19.1-4, Neal & Hinton 1998 | | pdf |
06 | Feb 03 | Case Studies: HMM and CRF (Eric) | pdf | panopto, youtube | Koller & Friedman Ch. 6.2, Wallach 2004, Lafferty, McCallum, Pereira 2001 | | pdf
| Approximate Inference |
07 | Feb 05 | Variational Inference 1: (Eric) - Variational methods - LDA | pdf | panopto, youtube | Wainwright, Jordan 2008 | | pdf |
08 | Feb 10 | Variational Inference 2: (Xun) - Stochastic/Black-box VI - VI Theory | pdf | panopto, youtube | Wainwright, Jordan 2008 | | pdf |
09 | Feb 12 | Sampling 1: (Eric) - Accept-reject sampling - Importance sampling - Metropolis-Hastings - Gibbs sampling | pdf | panopto, youtube | MacKay 2003, Ch. 29.1-3 | hw1 due | pdf |
10 | Feb 17 | Sampling 2: (Eric) - Hamiltonian Monte Carlo - Langevin dynamics - Sequential Monte Carlo | pdf | panopto, youtube | MacKay 2003, Ch. 29.4-10 | | pdf
| Deep Learning and Deep Generative Models |
11 | Feb 19 | Foundations of Deep Learning: (Eric) - Insight into DL - Connectionss to GM | pdf | panopto, youtube | Goodfellow, Bengio, Courville 2016 Ch. 6.2-5, 20.3-4 | proposal due, hw2 out | pdf |
12 | Feb 24 | Deep Generative Models 1: (Eric) - Wake-sleep algorithm - Variational autoencoder - Generative adversarial networks | pdf | panopto, youtube | Goodfellow, Bengio, Courville 2016 Ch. 20.9-10 Mohamed et al. 2019 | | pdf |
13 | Feb 26 | Deep Generative Models 2: (Eric) - More GANs and variants - Normalizing flows - Integrating domain knowledge in DL | pdf | panopto, youtube | Arjovsky, Bottou 2017, Papamakarios et al. 2019, Hu et al. 2018 | | pdf |
14 | Mar 02 | Deep Sequence Models: (Zhiting) - RNN and LSTM - CNN and Transformers - Attention mechanisms | pdf | panopto, youtube | Pascanu, Mikolov, Bengio 2013, Vaswani et al. 2017, Devlin et al. 2018 | | pdf |
15 | Mar 04 | Case Study: Text Generation (Zhiting) - Encoder-decoder framework - Machine translation as conditional generation - Unifying MLE and RL for text generation | pdf | panopto, youtube | Ranzato et al. 2015, Hu et al. 2017 | hw2 due, hw3 out | pdf |
| Mar 09 | | | | | Spring break | |
| Mar 11 | | | | | Spring break |
| Structure and Causal Inference |
| Mar 16 | | | | | No class. Stay healthy! | |
16 | Mar 18 | Structure Learning (Eric): - Undirected GM: Gaussian GM - Directed: Causal discovery | pdf | panopto, youtube | Meinshausen, Bühlmann 2006, Kolar et al. 2010 | | pdf |
17 | Mar 23 | Causality 1: (Kun Zhang) | pdf | panopto, youtube | Pearl et al. 2016 | | pdf |
18 | Mar 25 | Causality 2: (Kun Zhang) | pdf | panopto, youtube | Spirtes et al. 1993, Zhang et al. 2017 | | pdf
| RL as Inference in GMs |
19 | Mar 30 | RL as Inference 1 (Maruan) | pdf | panopto, youtube | Sutton, Barto Ch. 3-4, Lilian Weng blog post, Levine Sec. 1-4, Ziebart Ch. 5.1-2, 6.1-2 | | pdf |
20 | Apr 01 | RL as Inference 2 (Maruan) | pdf | panopto, youtube | | hw3 due, hw4 out | pdf
| RL as Inference in GMs |
21 | Apr 06 | Gaussian Process (Eric) | pdf | panopto, youtube | | | pdf |
22 | Apr 08 | Determinantal Point Process (Pengtao) | | panopto, youtube | | midway report due | pdf
| Bayesian Nonparametrics |
23 | Apr 13 | Dirichlet Process (Eric) | pdf | panopto, youtube | | | pdf |
24 | Apr 15 | Indian Buffet Process (Eric) | pdf | panopto, youtube | | | pdf
| Applications and Systems |
25 | Apr 20 | Spectral Graphical Models (Eric) | pdf | panopto, youtube | | | |
26 | Apr 22 | Large-scale Algorithms and Systems (Qirong) | pdf | panopto, youtube | | | |
27 | Apr 27 | Meta-Learning (Maruan) | pdf | panopto, youtube | | | |
28 | Apr 29 | Robust Machine Learning (Haohan) | pdf | panopto, youtube | | final report due |
|
Video playlists: Panopto, Youtube
Candidates for open slots:
Structure Learning for Markov Networks
Theory of Variational Inference
Spectral and Kernel GMs
Max-margin GMs
Regularized Bayesian Learning
Meta-learning and Neural Process
...
|