[ formulas
| nd
| and
| lv
| nd -> and
| and -> lv
| lv -> and
| and -> nd
| reductions
|| minimal linear logic
|| LLF
]
Annotated Linear Minimal Natural Deduction
%%% Minimal Linear Natural Deduction
%%% Annotated (elim, intro)
%%% Author: Frank Pfenning
elim : o -> type. % Elimination Deductions from Hypotheses (forward)
intro : o -> type. % Introductory Deductions from Conclusions (backward)
%name elim E
%name intro I
%% Coercions
e2i : (elim A -o intro A). % corresponds to axioms
i2e : (intro A -o elim A). % corresponds to cut
%% Multiplicative Connectives
impi' : (elim A -o intro B)
-o intro (A imp B).
impe' : intro A
-o elim (A imp B)
-o elim B.
timesi' : intro A
-o intro B
-o intro (A times B).
timese' : (elim A -o elim B -o intro C)
-o (elim (A times B) -o intro C).
onei' : intro one.
onee' : intro C
-o (elim one -o intro C).
% no par (multiplicative disjunction)
% no bot (multiplicative falsehood)
%% Additive Connectives
% no wave (additive implication)
withi' : (intro A & intro B)
-o intro (A with B).
withe1' : elim (A with B)
-o elim A.
withe2' : elim (A with B)
-o elim B.
topi' : <T>
-o intro (top).
% no tope
plusi1' : intro A
-o intro (A plus B).
plusi2' : intro B
-o intro (A plus B).
pluse' : ((elim A -o intro C) & (elim B -o intro C))
-o (elim (A plus B) -o intro C).
% no zeroi
zeroe' : <T>
-o (elim (zero) -o intro C).
%% No negation
%% Quantifiers
foralli' : ({a:i} intro (A a))
-o intro (forall A).
foralle' : {T:i} elim (forall A)
-o elim (A T).
existsi' : {T:i} intro (A T)
-o intro (exists A).
existse' : ({a:i} elim (A a) -o intro C)
-o (elim (exists A) -o intro C).
%% Exponentials
!i' : intro A
-> intro (! A).
!e' : (elim A -> intro C)
-o (elim (! A) -o intro C).
[ formulas
| nd
| and
| lv
| nd -> and
| and -> lv
| lv -> and
| and -> nd
| reductions
|| minimal linear logic
|| LLF
]
Frank Pfenning