[ formulas
| nd
| and
| lv
| nd -> and
| and -> lv
| lv -> and
| and -> nd
| reductions
|| minimal linear logic
|| LLF
]
Minimal Linear Natural Deduction
%%% Minimal Linear Natural Deduction
%%% Author: Frank Pfenning
nd : o -> type. % Natural Deductions
%name nd D
%% Multiplicative Connectives
impi : (nd A -o nd B)
-o nd (A imp B).
impe : nd A
-o nd (A imp B)
-o nd B.
timesi : nd A
-o nd B
-o nd (A times B).
timese : (nd A -o nd B -o nd C)
-o (nd (A times B) -o nd C).
onei : nd one.
onee : nd C
-o (nd one -o nd C).
% no par (multiplicative disjunction)
% no bot (multiplicative falsehood)
%% Additive Connectives
% no wave (additive implication)
withi : nd A & nd B
-o nd (A with B).
withe1 : nd (A with B)
-o nd A.
withe2 : nd (A with B)
-o nd B.
topi : <T>
-o nd (top).
% no tope
plusi1 : nd A
-o nd (A plus B).
plusi2 : nd B
-o nd (A plus B).
pluse : (nd A -o nd C) & (nd B -o nd C)
-o (nd (A plus B) -o nd C).
% no zeroi
zeroe : <T>
-o (nd (zero) -o nd C).
%% No negation
%% Quantifiers
foralli : ({a:i} nd (A a))
-o nd (forall A).
foralle : {T:i} nd (forall A)
-o nd (A T).
existsi : {T:i} nd (A T)
-o nd (exists A).
existse : ({a:i} nd (A a) -o nd C)
-o (nd (exists A) -o nd C).
%% Exponentials
!i : nd A
-> nd (! A).
!e : (nd A -> nd C)
-o (nd (! A) -o nd C).
[ formulas
| nd
| and
| lv
| nd -> and
| and -> lv
| lv -> and
| and -> nd
| reductions
|| minimal linear logic
|| LLF
]
Frank Pfenning