The lagrangian formulation is:

tex2html_wrap114 Then set tex2html_wrap115

To do this relativistically, make sure that S is a lorentz scalar. tex2html_wrap116 , so we want tex2html_wrap117 to be a lorentz scalar.

For a free particle, position does not matter, so tex2html_wrap118 so tex2html_wrap119 .

With a potential, you get: tex2html_wrap120

For a free particle in EM field: possible lorentz invariants: tex2html_wrap121 . Which means tex2html_wrap122 so tex2html_wrap123 .

This is not a lorentz covariant formulation.




source psfile jl@crush.caltech.edu index
continuous_system_lagrangian
charged_particle_lagrangian
electromagnetic_field
covariant_lagrangian