Probabilistic Graphical Models 

10-708, Fall 2006

School of Computer Science, Carnegie-MellonUniversity


 

 

Syllabus and Course Schedule


 

 

Module

Material covered

Online material and links

Dates and Instructor

Module 0: introduction

(1 Lectures)

 

Sep 13: Carlos Guestrin

Module 1: Fundamentals of Bayesian Networks (directed graphical models): representation, semantics, learning and inference


(9 Lectures)

  • Representation
  • Semantics
  • MLE parameter learning
  • Structure learning for BNs - complete data
    • Constraint-based
    • Chow-Liu
    • Fixed-order
    • Structure search
  • Exact inference
    • Variable elimination 
    • Junction trees
    • Context-specific independence

Sep 15: Carlos Guestrin
Sep 20:
Carlos Guestrin
Sep 22:
Carlos Guestrin

Sep 27: Carlos Guestrin

Sep 29: Carlos Guestrin

Oct 4: Carlos Guestrin
Oct 6: Carlos Guestrin
Oct 11:
Carlos Guestrin

Oct 13: Carlos Guestrin
Oct 18: Carlos Guestrin
Oct 20: NO CLASS

Module 2: Undirected Graphical Models, Markov random fields, Factor Graphs


(1 Lectures)

  • Undirected models  - Representation
  • Factor graphs - unifying representation
  • Exponential family

Oct 25: Carlos Guestrin

Module 3: Approximate inference 


(3 Lectures)

  • Sampling
    • importance sampling
    • MCMC, Gibbs
  • Variational inference
  • Loopy belief propagation
    • Generalized belief propagation
    • Kikuchi



Oct 27:
Carlos Guestrin
Nov 1: Carlos Guestrin
Nov 3: Ajit Singh

Module 4: Learning revisited


(2 Lectures)

  • Parameter estimation in BNs with missing data
    • EM
    • Gradient descent
  • Structure learning for BNs - missing data
  • Learning undirected graphical models
    • Gradient algorithms
    • IPF for tabular MRFs
    • Structure Learning



Nov 8:Carlos Guestrin
Nov 10:Carlos Guestrin
Nov 15:Carlos Guestrin

Module 5: Gaussian and hybrid models

(1 Lecture)

  • Multivariate Gaussians
  • Gaussian graphical models
  • Inference in Gaussian models
  • Hybrid models
    • discrete and continuous variables


 

 

 

Nov 17:Carlos Guestrin

Module 6: Temporal models

(1 Lecture)

  • Hidden Markov Models
    • Representation
    • Inference
      • Forwards-Backwards
      • Viterbi
      • Baum-Welch
  • Kalman filter
    • representation
    • linearization
    • switching Kalman filter
    • assumed density filtering
  • DBNs
    • Representation
    • Inference
    • BK
  • Relational probabilistic models


 

 

 

Special time: Nov 20 - 5:30-7pm, Wean 4615A: Carlos Guestrin
Special time: Nov 27 - 5:30-7pm, Wean 4615A: Carlos Guestrin

Module 7: Advanced Topics 

(2 Lectures)

  • Causality
  • Relational probabilistic models
  • Template models


 

 

 

Nov 22: NO CLASS 
Nov 24: NO CLASS
Nov 29:
Guest lecturer: Richard Scheines on causality! 
Dec 1: Carlos Guestrin

Project poster session

 

 

Dec 1, 3-6pm

Final Exam

All material thus far

 

Out Dec 1.
Due Dec 15 by 2pm

 

 

 

Recitation Schedule


 

 

Date

Time

Place

Topic

Instructor

Thursday 9/14/06

5-6:30pm

Wean 4615A

Review of basic probabilities

Andreas Krause

Monday 9/18/06

5:30-7pm

Wean 4615A

Matlab Tutorial

Jure Leskovec

Thursday 9/21/06

5-6:30pm

Wean 4615A

BN Semantics

Anna Goldenberg

Thursday 9/28/06

5-6:30pm

Wean 4615A

P-maps, Bayesian parameter learning

Khalid

Thursday 10/5/06

5-6:30pm

Wean 4615A

Structure learning

Ajit

Thursday 10/12/06

5-6:30pm

Wean 4615A

Variable Elimination

Khalid

Monday 10/16/06

 

5:30-7pm

Wean 4615A

Context-Specific Independence

Carlos

Thursday 10/19/06

5-6:30pm

Wean 4615A

 

Ajit

Thursday 10/26/06

5-6:30pm

Wean 4615A

Pairwise Markov Networks

Khalid

Thursday 11/2/06

5-6:30pm

Wean 4615A

Mean Field Variational Inference

Khalid

Monday 11/6/06

5:30-7pm

Wean 4615A

Dirichlet Process Mixtures

Khalid

Thursday 11/9/06

5:00-6:30pm

Wean 4615A

Loopy BP

Ajit

Monday 11/13/06

5:30-6:30pm

Wean 4615A

Relaxation Methods for Inference

Pradeep Ravikumar